REASONS FOR FOCUSING ON THE PREDICTION OF THE VERY EXTREME SEA STATES

Requirements from a design point of view (Norwegian Continental Shelf Practise)

Bad behaving response problems

Prediction of events corresponding to prescribed annual exceedance probabilities

Environmental contour lines

Sverre Haver,
Statoil ASA,
Stavanger, Norway
Åsgard C January 2006: $H_s = 12-15m$
Sea state severity approaching a level where structural integrity can be at risk
Requirements from a design point of view
(Norwegian Continental Shelf Practise)

- **Norwegian Rules and Regulations** require that offshore structures are controlled at two levels regarding overload – ULS and ALS.

- **Ultimate limit state (ULS) requirement:**

 \[\gamma_f x_c \leq \frac{y_c}{\gamma_m} \]

 - Safety factor, e.g. 1.3
 - Elastic capacity
 - Material factor, e.g. 1.15
 - 10^{-2} probability response
 - we should be concerned with response corresponding to very low annual exceedance probabilities.

- **Accidental limit state (ALS) requirement:**

 As above with \(\gamma_f = \gamma_m = 1.0, x_c = 10^{-4} \) annual probability load, and \(y_c = \) plastic system capacity
Why be concerned with 10^{-4} environmental load - Bad behaving problems

➔ If the response – annual exceedance probability relation changes abruptly in a worsening direction ULS requirement will not ensure a sufficiently low annual failure probability
Consistent prediction of q-probability loads

Assuming that the sea state is characterized by H_s and T_p and denoting a 3-hour maximum response quantity by X_{3h}, the long term distribution for X_{3h} is given by:

$$F_{X_{3h}}(x) = \int \int F_{X_{3h} \mid H_s, T_p}(x \mid h, t) f_{H_s T_p}(h, t) \, dt \, dh$$

As the long term distribution is known, the q-probability value is found by solving:

$$1 - F_{X_{3h}}(x_{3h,q}) = q / m_{3h}$$

▶ We need to account for both the long term weather variability and the short term response variability for obtaining consistent q-probability values.

Expected number of 3-hour events above threshold per year
Approximate method for consistent long term extremes

i) Determine the q-probability contour of H_s and T_p

ii) Determine the worst sea state along contour for selected response.

iii) Estimate the distribution of 3-hour maximum response for this sea state.

iv) The α-percentile of this distribution is a good estimate for the q-probability response, α is typically around 90.

=> A good estimate is a percentile well above the most probable value.
Predicting q-probability response in a storm climate

• Full long term analysis:
 * Joint distribution of H_s and T_p for all 3-hour events exceeding storm threshold.
 * Conditional distribution of 3-hour maximum response given H_s and T_p.

 ➔ This estimate will be considered as the “true” value.

• Environmental contour method:
 * q-probability contour for storm peak characteristics.
 * Conditional distribution for the most unfavourable sea states along the contour line.

 ➔ This is an approximate estimate, it will be demonstrated how good it is.
Storm peak contour lines
Response example

The conditional distribution of 3-hour maximum response given the sea state is modelled by a Gumbel model:

\[
F_{X_{3h}|H_{sp}T_{pp}}(x|h,t) = \exp\left\{ - \exp\left[- \left(\frac{x - \alpha(h,t)}{\beta(h,t)} \right) \right] \right\}
\]

Distribution parameters:

\[
\beta(h,t) = 0.1h^2 \left[1 + \cos^{40} \left(\frac{2\pi(t - 11.5)}{80} \right) \right]
\]

\[
\alpha(h,t) = \beta(h,t) \ln \left(\frac{10800}{0.75t} \right)
\]

[Scale parameter of Eq. (11) diagram]

9th International Workshop on Wave Hindcasting and Forecasting, September 2006
Results using contour line method

Table 3: Various quantiles for the worst range of the 0.01-probability contour line

<table>
<thead>
<tr>
<th>0.01 – probability contour sea state</th>
<th>Selected quantiles (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td>10.95</td>
<td>177.4</td>
</tr>
<tr>
<td>11.36</td>
<td>193.6</td>
</tr>
<tr>
<td>11.80</td>
<td>205.2</td>
</tr>
<tr>
<td>12.15</td>
<td>208.6</td>
</tr>
<tr>
<td>12.51</td>
<td>205.5</td>
</tr>
<tr>
<td>12.89</td>
<td>195.0</td>
</tr>
<tr>
<td>Full long term analysis</td>
<td>266</td>
</tr>
</tbody>
</table>

Table 5: Various quantiles for the worst range of the 0.0001-probability contour line

<table>
<thead>
<tr>
<th>0.0001 – probability contour sea state</th>
<th>Selected quantiles (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td>12.75</td>
<td>239.4</td>
</tr>
<tr>
<td>13.12</td>
<td>257.9</td>
</tr>
<tr>
<td>13.70</td>
<td>277.8</td>
</tr>
<tr>
<td>14.11</td>
<td>282.6</td>
</tr>
<tr>
<td>14.53</td>
<td>279.1</td>
</tr>
<tr>
<td>14.96</td>
<td>267.7</td>
</tr>
<tr>
<td>17.06</td>
<td>206.5</td>
</tr>
<tr>
<td>Full long term analysis</td>
<td>393</td>
</tr>
</tbody>
</table>
Concluding remarks

Why focus on the very extreme weather events?

• Annual probability of structural failure should be smaller than say 10^{-4}

 Loads on this probability level are defined by weather conditions corresponding to annual exceedance probabilities of $10^{-5} - 10^{-3}$.

• The adequacy of 10^{-2} - response and safety factor (ULS design control) is affected by whether or not the structural system is well-behaving.

• It is important to account for both the weather randomness and the conditional randomness of the short term response extreme value given the weather.
THE CHALLENGE: ROBUSTNESS AGAINST THE UNEXPECTED

KNOWN THREAT
Dangerous – but can be controlled
Wave-parallel:
10^{-2} – probability sea states

UNKNOWN THREAT
Difficult to control in a rational way.
Wave-parallel:
How will 10^{-4} probability sea states look? How bad can it become?
Example wave climate:
Storms exceeding 8m significant wave height in the Northern North Sea

- Long term climate model: Truncated version of model proposed by Haver and Nyhus (1986)

- Contour line: Joint model for H_{sp} and T_{pp} fitted to storm peaks exceeding 8m during the period 1973 – 2006 (159 storms).
Results of full long term analysis

\[
F_{X_{3h}}(x) = \int \int F_{X_{3h} \mid H_s, T_p}(x \mid h, t) f_{H_s, T_p}(h, t) \, dt \, dh
\]

\[1 - F_{X_{3h}}(x_{3h,q}) = \frac{q}{m_{3h}},\] where \(m_{3h_Haver\&Nyhus}(>8m) = 19.56 \)

<table>
<thead>
<tr>
<th>Annual exceedance probability, q</th>
<th>Response, (x_q)</th>
<th>Ratio: (x_{0.01}/x_q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.63 (1-year)</td>
<td>155</td>
<td>1.72</td>
</tr>
<tr>
<td>0.10 (10-year)</td>
<td>209</td>
<td>1.27</td>
</tr>
<tr>
<td>0.01 (100-year)</td>
<td>266</td>
<td>1.00</td>
</tr>
<tr>
<td>0.001 (1000-year)</td>
<td>327</td>
<td>0.81</td>
</tr>
<tr>
<td>0.0001 (10000-year)</td>
<td>393</td>
<td>0.68</td>
</tr>
</tbody>
</table>