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Abstract  

Following a discussion of shortcomings within existing methods for efficiently 

estimating transfer rates in wind wave spectra due to four-wave interactions, a new method 

for estimating these transfer rates is derived and tested. This formulation is based on a two-

scale approximation (TSA) to the total integral.  Comparisons of this new estimation 

method to the full integral are given for the several idealized spectra, including JONSWAP 

spectra with different peakednesses, a finite depth case, and cases with perturbations added 

to underlying parametric spectra. In particular, these comparisons show that the TSA is a 

significant improvement in accuracy over the Discrete Interaction Approximation in deep 

water and an even greater improvement in accuracy in shallow water.  

 

1. Introduction 

 

Hasselmann and Hasselmann (1985), and Hasselmann et al. (1985) argued that, to 

achieve a proper detailed-balance formulation for the physics of wave generation, it was 

essential to retain the same number of degrees of freedom within all source terms as 

contained in the modeled directional spectrum.  They opined that models failing to adhere 
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to this criterion would not be able to adapt to complex situations and would require 

extensive local tuning in applications.  

 

In a detailed-balance wave model, each of the three main source terms believed 

responsible for wave generation and decay (typically wind input ( inS ), nonlinear wave-

wave interactions ( nlS ), and wave breaking ( dsS )) must be cast in a detailed-balance form. 

Hasselmann et al (1985) and Komen et al. (1984) noted that inS  and dsS  could be 

straightforwardly written in detailed-balance forms. However, no detailed-balance form for 

nlS  existed at that time, other than the full integral representation, which even today is 

considered much too cumbersome for operational wave modeling. 

 

To fill this void, Hasselmann et al (1985) formulated the Discrete Interaction 

Approximation, commonly referred to as the DIA.  This important advance allowed all 

three primary source terms to be written in a detailed-balance form, leading to a new 

generation of wave models, termed third-generation (also denoted 3G) wave models 

(Komen et al., 1994).  Unfortunately, due to practical constraints on computations within 

operational models, the formulation of the DIA restricted possible four-wave interactions to 

a subset in which two of the interacting waves are co-located.  This subset represents only a 

small portion of the total interactions included within the general interaction space; 

consequently, the DIA is not able to provide a consistent representation for nlS  when 

compared to the full integral solution.  Instead, the DIA was calibrated to match only a 

single parametric quantity, the integrated energy transfer rate onto the forward face of the 
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spectrum for a standard JONSWAP spectrum (Hasselmann et al, 1973), since this quantity 

is of primary importance in wave generation.   

 

Since the standard JONSWAP spectral form will be utilized in several subsequent 

comparisons and discussions it is given here for reference, 
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This spectral characterization has five parameters, the spectral peak frequency ( pf ), the 

equilibrium range coefficient for an 5f − -based spectrum (α ), peakedness (γ ), the spectral 

width for frequencies less than the spectral peak frequency ( aσ ), and the spectral width for 

frequencies greater than or equal to the spectral peak frequency ( bσ ). 

 

Young and Van Vledder (1993) have shown that the nonlinear source term ( nlS ) is of 

central importance to the wave generation process; thus, the current state of the art in wave 

modeling via third-generation models can be significantly impaired by the lack fidelity in 

the DIA.  Consistent with this expectation, considerable evidence has now accumulated 

showing that third-generation models do not yield appropriate results for situations where 
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winds blow at oblique angles near a coast or for the case of narrow water bodies (Donelan, 

1980; Donelan et al, 1985; Pettersson et al, 2004). 

 

2. Estimation of the nonlinear interaction source term 

 

Hasselmann (1962) and Zakharov and Filonenko (1966) established the theoretical 

foundation for four-wave interactions within wave spectra.  Webb (1978), for the deep-

water case, and Resio et al (2001), for finite depth, formulated representative solutions for 

the transfer integral that have been shown to provide reasonable numerical representations 

for transfer rates due to these interactions.  In general, accurate estimation of nlS  for each 

frequency-direction component within a spectrum requires the evaluation of 1 2 3N N N  

contributing elements, where N1 is the number of discretized frequency bands in the 

spectrum, N2 is the number of discretized angles in the spectrum, and N3 is the number of 

sample points along the interaction locus (Resio and Perrie, 1991).   Hence the number of 

contributions that must be considered over the entire spectrum will be on the order 

of 2 2
1 2 3N N N .  A typical operational wave model uses 20 to 25 frequencies and 24 to 32 angle 

bands. Resio and Perrie (1991) showed that about 30 points along the wave-wave locus of 

interactions are required to provide an accurate estimate for the full integral.  Even with 

judicious filtering of regions included within the integrand, the number of operations 

required for a quasi-exact representation of nlS  is expected to remain much too large to 

allow its effective application in practical wave modeling, for some time to come. 
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At least five different approaches have been made to formulate an accurate, efficient 

evaluation of the full Boltzmann integral solution for nonlinear transfers in a wave 

spectrum:  1) parametric representations (Barnett, 1968; Ewing, 1971; Resio, 1981, 

Hasselmann et al, 1985); 2) local interaction or diffusion operator approximations 

(Hasselmann et al, 1985; Polnikov, 2002; Pushkarev et al, 2004); 3) linear combinations of 

orthogonal functions (Hasselmann et al, 1985); 4) reduced integration domains (Lin and 

Perrie, 1997, 1999); and 5) the discrete interaction approximation, or DIA.  Of these, only 

the DIA has found much success within operational wave models; consequently, this is the 

only method that will be examined here for contrast with the TSA. 

 

 In Figure 1, the DIA estimate for nlS , as optimized by Hasselmann et al (1985), is 

compared to the full Boltzmann integral estimate of nlS  for a standard JONSWAP spectrum 

(peakedness parameter, γ , equal to 3.3), with a 4cos θ  angular distribution of energy 

around the central wave direction. The directionally integrated transfers from the DIA are 

calibrated to optimize agreement with the full integral solution for the forward face of the 

spectrum, but deviate substantially elsewhere within the spectrum.  Comparisons of the 

DIA performance relative to the full integral solution, for spectra other than the standard 

JONSWAP peakedness, typically exhibit substantially larger deviations than shown in 

Figure 1. For example, Figures 2 and 3 provide comparisons of the DIA to the full integral 

for cases with the JONSWAP peakedness parameter equal to 1 and 7, respectively. Thus, 

although the DIA’s calibration for γ  equal to 3.3 forces some degree of consistency 

between it and the full integral, for γ = 3.3, this agreement is limited to a small range of γ 
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values centered on this value and cannot be construed as representing a general validation 

for a broad range of spectral shapes.   

 

In particular, as a “fully-developed” spectral shape (γ =1) is approached, one must 

assume a large dissipative wave-breaking term near the spectral peak to balance DIA’s 

substantial over-estimation of  the nonlinear wave-wave interactions on the forward face of 

the spectrum to arrest wave growth at this stage.  Moreover, the corresponding wind input 

source term would need to be artificially enhanced on the rear face of the spectrum for 

essentially all cases in order to compensate for the DIA’s tendency to overestimate the 

magnitude of the negative lobe in this spectral region.  

 

The primary reason for the DIA’s failure to provide suitable estimates for nlS  is 

most likely due to the difference between the DIA’s integration locus, which falls only 

along the Phillips (1960) figure-8 diagram; whereas, the full integral includes contributions 

from the entire area surrounding any point within a continuous spectrum. This lack of 

consistency between the integration domains is the primary reason why adding more 

quadraplets along the figure 8 does not produce a very marked improvement in the DIA 

formulation compared to the total Boltzmann integral.  

 

Given today’s focus on coastal environments, it is also important that the operational 

form for nlS  provide accurate estimates for relatively shallow depths.  The method for 

estimating nlS  in today’s 3G shallow water models (Booij et al., 1999) is based on a scaling 

argument initially developed by Herterich and Hasselmann (1980).  As pointed out by 
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Herterich and Hassemann (1980), this formulation is limited in its applicability to wave 

spectra for which 1pk h ≥ , where pk is the wavenumber of the spectral peak. 

 

To investigate what happens when the restriction on  1pk h ≥ is violated, let us 

examine the simple case of a standard JONSWAP spectrum (the calibration case for the 

DIA) with a peak period of 10 seconds in a depth of 10.5 meters ( 0.7pk h ≈ ).  Figure 4 

shows a comparison of a scaled DIA calculation and the full-integral, finite-depth 

calculation for the same spectrum.  The scaled DIA estimate underestimates the positive 

lobe on the forward face of the spectrum by about one order of magnitude.  It also 

underestimates the magnitude of the central negative lobe in nlS  by a factor of about 6 and 

moves this lobe from the spectral peak region to higher frequencies.  Importantly, since the 

Herterich and Hasselmann (1980) scaling provides only a scalar multiplier for the entire 

range of frequencies in the spectrum, it does not allow the spectral shape to evolve from its 

deep-water form into the finite-depth form.  This evolution has been well documented by 

Bouws et al. (1985) who linked changes in spectral form to significant energy losses within 

coastal wave spectra and is consistent with the pattern of nonlinear interactions in finite 

depth as shown by Resio et al. (2001). 

  

 

3.  A two-scale approximation (TSA) for nonlinear transfers  

 

Hasselmann (1962) showed that the cumulative transfer of energy in a continuous 

spectrum from one spectral frequency-direction component to another in deep water 
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involves four interacting waves, located at wavenumbers 1 2 3 4, , ,k k k k .  Following Webb 

(1978), the rate of change of action density at a point within a spectrum, 1k , can be written 

as an integral, over all 3k , of the transfer rates 1 3( , )T k k  from wavenumber 3k  to 

wavenumber 1k , i.e. 

 

1
1 3 3

( ) ( , )  n k T k k dk
t

∂
=

∂ ∫∫        (2) 

 

.  Webb (1978) showed that the transfer rate depends on action densities at all four 

interacting wavenumbers and could be written as 

 

( ) 1
1 3 1 3 4 2 2 4 3 1 1 2 3 4 1 4 1 3( , ) [ ( ) ( )] ( , , , ) | |WT k k n n n n n n n n C k k k k k k k k ds

n
θ −∂

= − + − − − −
∂∫    (3) 

 

where ( ) 1xθ =  if 0x >  and ( ) 0xθ =  otherwise, where 4 1 2 3k k k k= + −  and 

( )2 2 1 3, ,k k s k k= , and in denotes the action density at ik . The function W defined as  

 

1 2 3 4W ω ω ω ω= + − −         (4) 

 

constrains the interactions to ensure energy conservation, s is the locus of points satisfying 

the condition W=0, and n is the local orthogonal to the resonant locus.  Webb (1978)’s 

derivation utilized the deep-water dispersion relationship,  
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2
i igkω =          (5) 

 

where | |i ik k= . However, Resio et al. (2001) showed that the equation (3) was valid in 

shallow water, provided the general form of the dispersion relationship was used, 

 

2 tanh( )i i igk k hω =         (6) 

 

where h is the water depth, along with the appropriate depth-dependent forms for the 

coupling coefficient.  

 

The lack of success in various previous approximations to the full-integral for 

nonlinear energy transfers in deep-water ocean spectra stems from several  factors, 

including, 1) the relatively broad structure of the transfer function, 1 3( , )T k k in equation 3, 

2) the existence of strong localized interaction areas within these broad patterns, which can 

be very important near the peak of the spectrum, 3) the variation of the shape and location 

of the regions of strong interactions within a spectrum, and 4) the cubic dependence of the 

interaction rates on local energy densities.  In addition to these deep-water problems, it does 

not appear possible to find a simple scalar multiplier suitable for transforming estimates of 

nonlinear transfers in deep water to “equivalent” estimates in shallow water.  Thus, it seems 

that a totally new approach is required. 

 

 We begin by splitting the action density terms, in , in equation 3 as the sum of two 

arbitrary components 
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ˆi i in n n′= +           

where the “hat” in̂  represents the first component, and the “prime” in′  represents the 

second. For this two-component decomposition, the density term in the transfer integral 

becomes  

 

  

3
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   (7)  

   

 

It can be seen here that the general integral can be written as the sum of interactions among 

the first component in̂  terms only (row 1), interactions among the second component in′  

terms only (row 2), and cross interactions among the two components (rows 3-8).  If the 

two components are of comparable magnitude everywhere, each row in equation 7 will also 

be of comparable magnitude everywhere.  In this case the cross-interactions will be six 

times larger than either the interactions involving in̂  terms alone or the interactions 

involving in′  terms alone. 
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Substituting the form for the spectral density from equation 7 into equation 3 does 

not reduce the accuracy of the transfer integral and affords a good means to examine the 

general problem of two arbitrary interacting wave trains.  Although this can also be done 

numerically by subtracting the interactions for a single wave train from the interactions for 

the sum of two wave trains, the latter approach does not provide the same insight as the use 

of the “split” density function, where the cross-interaction terms can be examined 

algebraically.  However, this is beyond the focus of this paper, so we shall not examine this 

aspect of the approach used here. 

 

Although substitution of the two-component spectrum ( in̂  and in′ ) into the density 

triplets provides a convenient methodology for examining interactions between two wave 

fields, it requires more computational operations than the simple density form in to compute 

the full integral. Thus, per se, such a partitioning does not provide an effective tool for 

efficiently estimating nonlinear transfer rates.  To accomplish this, we will assume that the 

distribution of energy within a spectrum can be expressed as the sum of two primary scales 

(thus the Two Scale Approximation name), a broad-scale variation that can be captured 

parametrically, and a local-scale variation that represents deviations between the 

parameterized action density levels and the actual action densities within a spectrum.  

 

The TSA retains the effect of the overall spectral shape on nonlinear transfers, while 

allowing the effects of localized deviations and the interactions between the deviations and 

the large-scale spectral structure to be included.  Inclusion of only the first term, in̂ , is 

comparable to older parametric methods, which, as noted previously, would result in 
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artificial constraints on the behavior of the spectrum if only this term were retained.  

Inclusion of the second (local) scale, in′  , retains the same number of degrees of freedom as 

the number of discretized spectral elements. 

 

In general, we can write the total interactions for any two-part spectral 

decomposition of the type introduced here ( in̂  and in′ ) as 

 

( , )nlS f B L Xθ = + +        (8) 

 

where B and L represent interactions within the broad-scale only energies in̂  and the local-

scale only energies in′ , respectively, and X represents the cross-interactions between the 

two scales.  Using the “exact” integral we can generate a matrix of detailed estimates of nlS  

for a set of n parameters,  

 

1( , ) ( , , ,..., )nl broad scale nS f B f x xθ θ− =     (9) 

 

where ix  is the value of the ith parameter.  The crux of the remaining problem in estimating 

( , )nlS f θ  via the TSA formulation is to find a suitable approximation for L X+ .  

 

 The complete transfer integral can be separated into the sum of seven separate 

integrals, each containing only a single row of equation 7 within its density function,  plus 

the broad-scale contribution, i.e.  
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8
3 1

3 3 3
2

| |  nl j
j

WS B N C ds k d dk
n

θ−

=

∂
= +

∂∑∫∫       (10) 

 

where j refers to the jth row in equation 7.  If all seven terms inside the sum (j = 2, 8) were 

computed, this would represent an approximate seven-fold increase in the number of 

computer operations required compared to the initial integral form, for an “exact” 

representation.  However, since local-scale perturbations ( in′  terms) represent deviations 

around the broad-scale basis ( in̂ terms), it is expected that 2n ′  and 4n ′ , along with their 

differences and their products, will contain both positive and negative regions as one moves 

along the respective interaction locus for each. On the other hand, the broad scale terms 2n̂  

and 4n̂  tend to have much longer lengths along s in which the sign is unchanged.  And, , if 

we have done our parameterization in a reasonable way, the magnitude of the local-scale 

terms , 2n ′  and 4n ′ , tends to be substantially smaller than that of the broad-scale terms, 1̂n  

and 3n̂ .  Consequently, all rows and parts of rows containing 2n ′  and 4n ′  in equation 7, will 

tend to be significantly smaller those containing 2n̂  and 4n̂ , as well as those containing 1n̂  

and 3n̂ ,  and therefore will be neglected in the TSA formulation. 

 

After eliminating terms containing 2n ′  and 4n ′ and simplifying, it is possible to write 

equation 10 as 
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3 11
* 3 3 3 *| |  ( )n WB N C ds k d dk B L X

t n
θ−∂ ∂

= + = + +
∂ ∂∫∫    (11) 

 

where 3
*N  is given by  

 

3
* 2 4 3 1 1 3 4 2 1 3 4 2 1 3 4 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )N n n n n n n n n n n n n n n n n′ ′ ′ ′ ′ ′= − + − + − + −   (12) 

 

The subscript “*”, after the parenthesis in equation 11, indicates that the L- and X-scale 

interaction terms include only the density terms given in equation 12. 

 

Since both 2n̂  and 4n̂  depend only on the same broad-scale set of parameters 

( 1,..., nx x ) used in calculating B, this same set can be used as the basis for computing all 

line integral quantities involving 2n̂  and 4n̂  in equation 11.   It can be seen from equation 

12 that this representation retains all broad-scale terms in the density equation and is 

therefore an “exact” solution for the parametric portion of the spectrum.  The local- and 

cross-scale interactions retain only the set of densities that neglect contributions due to 2n ′  

and 4n ′ . 

 

Making use of wavenumber and angle scaling relations and inherent steepness 

scaling, we can write equation 12 as 



 15

0

1 3 1 3 1 3 2 4 1 * * 1 n * * *3
01

2
0

1 3 2 4 1 * * 1 n * * *
0

ˆ ˆ ˆ ˆ( ) ( , , , ,x ,...,x ) 

ˆ ˆ                           ( ) ( , , , ,x ,...,x ) 

where

(

p
p

p
d

p

n n n n n n n n k k k d dk
fn B

t f
n n n n k k k d dk

β θ θ
ββ

β β θ θ
β

⎛ ⎞
′ ′ ′ ′+ + Λ −⎜ ⎟

⎛ ⎞⎛ ⎞ ⎝ ⎠∂
= + ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ⎛ ⎞⎝ ⎠ ⎝ ⎠ ′ ′+ − Λ⎜ ⎟

⎝ ⎠

Λ

∫∫

∫∫

1
2 4 1 * * 1 n 4 2

1
2 4 1 * * 1 n 2 4

ˆ ˆ ˆ ˆ, , , ,x ,...,x )= | | ( )

ˆ ˆ ˆ ˆ( , , , ,x ,...,x ) = | |d

Wn n k k C n n ds
n

Wn n k k C n n ds
n

θ

θ

−

−

∂
− −

∂
∂

Λ
∂

∫

∫
 

           (13) 

  

and where 
0

β
β

⎛ ⎞
⎜ ⎟
⎝ ⎠

is the ratio of the actual steepness to a reference steepness for the large-

scale spectral component, 0p

p

f
f

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 is the ratio of the reference spectral peak frequency to the 

actual peak frequency of the spectrum, and *θ  and *k  are defined as 

 

* 3 1θ θ θ= −          (14) 

and 

 

3 1
*

p

k kk
k

⎛ ⎞−
= ⎜ ⎟⎜ ⎟
⎝ ⎠

         (15) 

 

An important computational advantage of equation 13 is that, even though both local-

scale and cross interaction contributions to the transfer integral are retained, all terms 
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involving the line integral along s can be pre-computed on the same discretized  basis as B.  

Integration around these loci constitutes the innermost loop for computations within the 

WRT formulation.  Numerical experiments show that this innermost loop represents 

between 99.5% and 99.7% of the total computation time in a recently optimized WRT code 

for most spectra. Retaining the same integration domain as the complete integral therefore 

can reduce the time required for computations by about a factor of 250 to 500. Additional 

reductions in TSA run time can be achieved by 1) limiting the number of points at which 

nlS  is evaluated and 2) limiting the integration domain via restrictions on *k and *θ . 

 

4.  Tests of the TSA for parametric spectra  

 

 A number of tests are required to establish the viability of the TSA formulation for 

spectral wave modeling.  Following the approach of the initial paper on the DIA by 

Hasselmann et al. (1985), the first tests will be limited to static comparisons between the 

TSA and the full integral solution for nonlinear transfers in deep water.  From the structure 

of equation 13, it is apparent that the accuracy of the parameterization used for B will 

directly influence the accuracy of this approximation.  Since the purpose of this paper is to 

introduce the two-scale approximation and to demonstrate its relevance for wave modeling, 

we shall use only a simple parameterization here.  

 

 Let us assume that a simple characterization of the broad-scale structure of deep-

water wave spectra can be accomplished by five parameters, ,  ,  ,  ,  and p a bf β κ σ σ where 

these are defined as the spectral peak frequency,  equilibrium range coefficient, 4f − -based 
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peakedness parameter, spectral width parameter for the forward face of the spectrum (low-

frequency side of the spectral peak), and the spectral width parameter for the rear face of 

the spectrum (high-frequency side of the spectral peak).  It is possible to show, both 

analytically and numerically, that wave-wave interactions for two 4f −  spectra as defined 

here, with the same values for a b,  ,  and κ σ σ , along with the same directional distribution 

of energy are exactly related by  

 

3 1 3 1( , ) ( , )
p pnl nlf S f f S fβ θ β θ− −′ ′ ′=       (16) 

 

where the prime is used to denote the values of and pfβ for a second spectrum.  Thus, 

 and pfβ can both be algebraically factored out of this type of a parametric representation 

for a spectrum, while still retaining exact information on nonlinear transfer rates.  This 

scaling, was used in equation 13 to convert from reference values to specific spectra.  If we 

further simplify the parameterization by fixing both spectral width parameters to specific 

values, the peakedness parameter, κ , is left as the only free parameter in the spectral 

representation that will be used here.   For all tests shown here, all pre-computed terms are 

retrieved from matrices of the form ( , , ),  ( , , ),  and ( , , )p dB f f fθ κ θ κ θ κΛ Λ , with κ 

discretized in increments of 0.1 over a range of 0.4 to 4.  

 

 The JONSWAP spectrum is an f-5-based spectrum rather than an f-4-based spectrum; 

consequently, tests with this spectral form provide a good test for TSA, since it deviates 

considerably from the broad-scale spectral form used here.  Figures 5, 6, and 7 provide 
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comparisons of the directionally integrated TSA results to the full-integral solution for 

JONSWAP spectra with peakednesses equal to 1, 3.3, and 7, respectively.  The contribution 

to the TSA from the parametric solution alone is also shown in these figures.  Overall, since 

these are relatively simple spectra, the basic parametric representation (the interactions 

among only the B-scale spectral components) provides a fairly good approximation to the 

directionally integrated transfer rates for each spectrum.  However, in each case, the 

addition of the L- and X-scale terms into the TSA is seen to improve the agreement between 

the full-integral solution and the approximation. 

 

 In the case of the Pierson-Moskowitz spectrum ( 1γ = ), the broad-scale solution 

slightly misplaces the positive transfer lobe toward lower frequencies and overestimates its 

magnitude by about 50%.  The use of additional terms in the TSA formulation moves the 

positive lobe into very good agreement, in terms of both location and magnitude.  In both 

the negative lobe region and the high-frequency region, the additional terms of the TSA 

formulation help move the displaced mid-frequency energy sink into closer agreement with 

the full-integral solution; but the improvement is not as marked as it is for the initial 

positive lobe.  

 

In the case of the standard JONSWOP spectrum ( 3.3γ = ), the additional TSA terms 

reduce the undershoot of the parameterized solution, relative to the parametric solution 

alone, in the low-frequency positive lobe, by slightly over 20%, and in the mid-range 

negative lobe, by slightly over 40%.  In the high-frequency region, the full TSA also 

reduces the deviations from the full-integral solution by over 50%.  In the case of the very 
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peaked spectrum ( 7γ = ), the additional TSA terms result in improvements over the 

parametric (B-scale) solution by magnitudes that are similar to those of the standard 

JONSWAP spectrum ( 3.3γ = ). 

 

Figures 5, 6, and 7 suggest that the TSA could have considerable promise for wave 

modeling. However, because the B-scale interactions represent a significant portion of the 

total interactions and appear to capture much of the basic shape of the overall transfer 

function, these cases may not provide a strong argument that this approximation will work 

well for spectral shapes with significant local deviations from a broad parametric shape.  To 

investigate the suitability of the TSA for more complex spectra, we examine some results 

for spectra with perturbations added to them.   Previous investigations (Perrie and Resio, 

2004) have shown that the DIA does an extremely poor job in representing complex cases 

such as will be examined below. 

 

Using the spectral shape of Resio and Perrie (1989) with an added Gaussian energy 

perturbation yields an equation of the form 

 

( )
4

1 2 03( , ) ( ) ,
(2 )

s
z

p

u gf fE f s f f z
f

αθ θ θ θ θ
π

− ⎛ ⎞
= Ψ Ψ − × Ζ − −⎜ ⎟⎜ ⎟

⎝ ⎠
   (17) 

where the perturbation term is given in terms of a bivariate Gaussian form 
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with parameter values of z 0 f z1.5 ,  ,  0.3,  0.1,  and A 1.0.z pf f θθ θ σ σ= = = = =   In this case 

the parameterized spectral shape will be taken as the first term in equation 17, leaving the 

perturbation  term exactly equal to the second term multiplied by the local energy density.  

Figure 8 gives the results for the complete integral solution, the parametric-only 

interactions, and the TSA for the case of κ = 2.2 (characteristic of a local sea spectrum) and 

a cos4θ angular spreading function.  Since the parameterization does not have any 

information on the perturbation, it retains precisely the same form as if the positive 

perturbation did not exist.  The addition of the L- and X-scale interactions in the TSA does 

an excellent job in capturing the effects of the perturbation.  Figure 9 provides results 

similar to those in Figure 8, for the case of all parameters held the same, except that we 

change the sign of the perturbation, i.e. 1zA = − .  Again, the L- and X-scale interactions do 

a remarkable job in capturing the effects of the perturbations.   

 

 In tests shown in Figures 8 and 9, the central angle of the perturbation is identical to 

the mean angle of the parametric spectrum.  Figure 10 shows the results for a case in which 

the spectrum contains a 40-degree discontinuity at 1.5 pf f= , retaining the same values for 

E(f) as though the spectrum had not been shifted. A cos4θ angular spreading function is 

used for this case and κ = 1.2.  In this case, although the TSA captures the magnitudes of 
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the positive lobes at both the spectral peak and the region immediately above the angular 

discontinuity along with the positions of these lobes, it overestimates the negative lobe by a 

factor of about 2.  While this performance is still markedly superior to the performance of 

the DIA for this type of case, we feel that it may be possible to improve upon these results 

by paying additional attention to the treatment of the B-scale interactions, which was 

intentionally kept quite simple here. 

  

 As a final test of the TSA, we shall examine its performance for the same finite-

depth case shown previously for the DIA, using exactly the same combination of B-scale 

parameterization and L- and X-scale interactions as for the deep-water cases.  The only 

difference is that each of the B-scale, L-scale, and X-scale terms were computed using the 

actual depth of 10.5 meters.  In general, for finite-depth applications, a second free 

parameter ( pk h ) could be used to represent the B-scale terms quite accurately, based on a 

suitable discretization. Figure 11 shows the results for the full-integral solution, TSA, and 

the DIA.  It is clear that the TSA has captured the finite-depth effects quite well, and 

certainly much better than the extrapolation of the Herterich and Hasselmann (1980) 

approach to values beyond their region of applicability. 

 

 

5. Discussion and Conclusions  

 

 For wave models to accurately represent the detailed-balance of the source terms 

responsible for wave generation and decay under a wide range of conditions, it is essential 
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that each of the three primary terms contributing to this balance be realistically depicted for 

a substantial range of spectral shapes.  For over twenty years, the only approximation for 

four-wave interactions that has shown utility for detailed-balance wave modeling has been 

the Discrete Interaction Approximation, or DIA.  This paper has demonstrated that 

significant problems exist with the DIA estimates of nonlinear transfers in deep water.  

These errors cannot be “tuned out” since the DIA is based on a reduced form of the 

Boltzmann integral that does not include the majority of the actual interactions within a 

spectrum.  In shallow water, the extrapolation of scaling arguments due to Herterich and 

Hasselmann (1980) into regions well beyond the appropriate range for this approximation 

renders estimates of nonlinear transfers in detailed-balance models very inaccurate when 

applied in depths typical of coastal regions.   

 

 This paper introduces a new approximation, the Two-Scale Approximation (TSA), 

based on the separation of a spectrum into a broad-scale component and a local-scale 

(perturbation) component.  This new method relies on a parametric representation of the 

broad-scale spectral structure, while preserving the degrees of freedom essential to a 

detailed-balance source term formulation via the inclusion of the second scale in the 

approximation. This approximation appears to provide significantly increased accuracy 

over the DIA in all regions of the spectrum for all of the cases examined in this paper. Of 

particular importance is the very large improvement over the DIA for the finite-depth case 

examined.  It is important to note that this new approximation is based on the actual 

structure of the full-integral solution and uses no tuning coefficients to achieve the results 

shown in this paper.   
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Figure 1. Comparison of the directionally integrated nonlinear interaction source term, 

Snl(f), for the DIA (dashed line) with results from the full Boltzmann integral (solid 
line) for a standard JONSWAP spectrum, with 4cos θ  angular distribution of energy 
around the central wave direction, and peak frequency fp = 0.1 peakedness γ = 3.3.   
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Figure 2.  Comparison of the directionally integrated nonlinear interaction source term, 

Snl(f), for the DIA (dashed line) with results from the full Boltzmann integral (solid 
line) for a standard JONSWAP spectrum, with 4cos θ  angular distribution of energy 
around the central wave direction, and peak frequency fp = 0.1 peakedness γ = 1.0.   
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Figure 3.  Comparison of the directionally integrated nonlinear interaction source term, 

Snl(f), for the DIA (dashed line) with results from the full Boltzmann integral (solid 
line) for a standard JONSWAP spectrum, with 4cos θ  angular distribution of energy 
around the central wave direction, and peak frequency fp = 0.1 peakedness γ = 7.0.   
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Figure 4.  Comparison of a scaled DIA calculation and an actual full-integral, finite-depth 

calculation, showing that the scaled DIA estimate underestimates the positive lobe on 
the forward face of the spectrum by an order of magnitude for the case of kph=0.7 
(JONSWAP spectrum with a peak period of 10 seconds in depth of 10.5 meters).  The 
dashed line is the Herterich and Hasselmann (1980) scaling of the DIA and the solid 
line is the finite-depth, full integral solution for the same case. 

 
 
 
 
 
 
 
 



 31

 
 
Figure 5. Comparisons of the TSA results to the full-integral solution for JONSWAP 

spectra with peakednesses equal to 1.  Also shown is the contribution to the TSA from 
the parametric solution alone.  (PM – solid full integral, dash TSA, dot-dash parametric 
alone).  
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Figure 6. As in Figure 11a with peakednesses equal to 3.3.  
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Figure 7. As in Figure 11a with peakednesses equal to 7.  
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Figure 8. Results for (i) complete integral solution, (ii) parametric-only interactions, and 

(iii) TSA for the case of κ = 2.2 and a cos4θ angular spreading, with a secondary 
positive Gaussian perturbation superposed on the spectrum at / 1.5pf f = , i.e. 1zA = .   
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Figure 9. As in Figure 14a, for a negative Gaussian perturbation, i.e. 1zA = − .  
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Figure 10. Results for a case in which the spectrum contains a 40-degree discontinuity 

at 1.5 pf f= , retaining the same values for E(f) as though the spectrum had not been 
shifted. Case with 40-degree angle shift at 1.5 fp 
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Figure 11.  Results for the full-integral solution, TSA, and the DIA, using the actual depth 

of 10.5 meters.  Finite depth kh=0.7 case, where solid line is full integral, dashed is 
TSA, and dot-dash is DIA. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 


