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1.    INTRODUCTION AND MOTIVATION 
 
Processes describing the environment are 
capricious fellows. They are a result of complex 
physical mechanisms often involving strong non-
linearities. Occasionally, the resulting structural 
loads may involve an on-off type of mechanism, 
making the design load prediction problem even 
more complex. Although our understanding of the 
underlying mechanisms has increased considerably 
during the last century, most of these processes 
must still be considered as being of an inherent 
random nature. In sum these processes generate the 
occasionally rather hostile environment which 
mankind for all times have challenged with their 
manmade structures – land based as well as sea 
going.  
 
Going far back in time, structural design was of an 
empirical nature and evolved gradually as 
experience was gained the hard way. A structure 
was build to serve some purpose and if for some 
reason the structure failed, a new and much 
stronger structure was typically replacing the failed 
one. 
 
As of today, structural design codes encourage a 
more rational design approach. The time period of 
the foreseeable use of the structure is defined a 
priori. Recipes and guidance for how to determine 
foreseeable maximum loads towards which the 
structures are to be designed are provided by 
various rules and regulations. This ensures that low 
probability load events are not missed (at least not 
those being in agreement with the state-of-the art 
knowledge of the environment faced by the 
structure). Using modern codes, rather optimized 
(and therefore slightly cheaper) structures can be 
designed. However, in connection with such an 
optimization, there is a danger that the structure  

 
becomes less robust towards unforeseen load 
events. This because the optimizing approach may 
reduce the conservatism traditionally used 
regarding a given load quantity reflecting a belief 
that an increased insight regarding this load has 
been achieved. This does not deteriorate structural 
safety below what is acceptable with respect to that 
particular load quantity. However, it may well be 
that this traditional conservatism could represent an 
important contribution to an implicit barrier against 
load events not considered explicitly in the design 
process. The more optimized a structure is, the 
more important it is to control the structure against 
the very low probability events (i.e. an annual 
occurrence probability comparable to the maximum 
acceptable failure probability) of the governing load 
processes (e.g. the wave process) if they are 
dominated by inherent randomness (which is the 
case for the wave elevation process).   
 
A modern design code ensures a certain robustness 
towards the unforeseen by requiring that both the 
predicted loads and the calculated structural 
capacities are multiplied and divided, respectively, 
by partial safety factors. A simplified review of the 
design framework will be included in the next 
chapter. The annual exceedance probabilities of the 
selected characteristic loads are typically from 1/20 
– 1/100. It is tacitly assumed that an overall 
acceptable safety is obtained when designing the 
structure against these target loads multiplied by the 
rule specified partial load factors. However, this is 
under the condition that the statistical structure of 
the load populations considered when predicting the 
target characteristic values also are representative 
for what takes place with a much lower annual 
exceedance probability.  
 
A typical time period for available data, 
measurements or hindcast, could cover 10-50 years. 
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This is possibly not too bad for estimating loads 
corresponding to the required target eceeedance 
probabilities for the characteristic loads. But one 
should bear in mind that most likely rather large 
uncertainties will be associated with the estimation 
of values corresponding to annual exceedance 
probabilities in the order of 10-5 – 10-3. This is 
important because it is the aim of the design 
process to ensure that the structure shall resist loads 
at these low probability levels with at most some 
local structural damage.  
 
When exposing a structure to a wave or a wave 
train with a 10-2 - probability wave height or 
significant wave height, respectively, a given 
picture of the maximum loads on the structure is 
obtained. (Throughout the paper a q-probability 
event means an event corresponding to an annual 
exceedance probability of q.) If the severity of the 
wave event is worsened by say 25% without 
dramatically changing the load picture (i.e. except 
for a general increase of say 25-50%, the load 
picture is the same), there are good reasons to 
believe that the structure has some robustness 
against the most severe weather conditions.  
However, if the design process merely is focusing 
on say 10-2 - probability wave conditions, a possible 
occurrence of say 10-4 - probability wave conditions 
can result in a quite different maximum load picture 
on the structure, e.g. if a wave-deck impact is 
experienced. This means that the total 
environmental load on the structure increases by a 
factor 2 or more instead of the implicitly assumed 
increase of 25-50%. For certain structural elements 
one may go from essentially no load to a very large 
load. 
 
In summing up this introductory discussion, a 
properly designed structure shall correspond to a 
very low annual probability of structural collapse. 
Here we will not present any explicit target for the 
failure probability. Denoting the maximum 
permissible annual collapse probability by qt, a 
structure should at least be demonstrated to 
withstand all individual environmental events 
corresponding to annual exceedance probabilities in 
the vicinity of qt. In this connection, one should 
expose the structure to the most severe 
environmental conditions in order to verify that the 
design load picture used in connection with the 
characteristic loads (corresponding to an annual 
occurrence probability a couple of order of 
magnitudes higher than qt) is representative for the 
qt-probability load picture, i.e. the difference 
between the load pictures should essentially be a 
scaling of the load level.  
 

It is often claimed that the prediction of events 
corresponding to annual exceedance probabilities 
well below say 10-2 is associated with very large 
uncertainties. This is true, no doubt, however, these 
uncertainties are not disappearing by not facing 
them! It is also important to remember that it is load 
events corresponding to these rather low annual 
occurrence probabilities that may represent a risk to 
the structural integrity.   
 
In the paper, a simplified framework of structural 
design will be presented. In connection with this, 
the use of the accidental limit state (ALS) to 
capture very rare metocean loads will be discussed. 
It will be pointed out when the ALS control could 
be important to include. A method for predicting 
very rare load and response quantities for complex 
response problems will be presented. If a consistent 
estimate of a q-probability load/response shall be 
achieved, it is important to capture both the 
variability in the long term metocean conditions 
and the variability associated with the largest 
response given the metocean condition. It is 
demonstrated that if the median or mean largest 
response in a q-probability sea state is adopted as a 
characteristic response, the exceedance probability 
of the characteristic value is much larger than q. For 
a strongly non-linear problem it may possibly be an 
order of magnitude higher. Finally, the paper is 
closed by indicating the adequacy of the suggested 
approach for a generic example exposed to a harsh 
weather storm climate.  
 

2.     FRAMEWORK OF DESIGN  
According to Norwegian Rules and Regulations see 
e.g. NORSOK(1999) and PSA(2001), an offshore 
structure is to be controlled against overload 
failures at two levels; ultimate limit state (ULS) 
control and accidental limit state control (ALS). 
 
The ULS design control will most often govern the 
design against environmental loads. However, at 
the end of this section we will point to cases where 
there is a need for a design control beyond ULS. In 
connection with ULS, the characteristic 
environmental load effect, xc, is defined as the load 
effect corresponding to an annual exceedance 
probability of 10-2. The characteristic capacity, yc, is 
taken as a lower percentile (often 5%) of the 
distribution of the elastic component capacity. It 
should be noted that in practical design work we 
will also have to account for load effects caused by 
permanent and functional loads. In view of the 
illustrative nature of this paper we will herein limit 
ourselves to wave induced loads. Uncertainties of 
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various origins will be associated with both xc and 
yc and in order to ensure a sufficient margin against 
structural failure, partial safety factors, γf and γm, 
are introduced, i.e. the ULS control reads (when 
neglecting permanent and functional loads): 

m

c
cf

y
x

γ
γ ≤     (1) 

For steel structures on the Norwegian Continental 
Shelf, γf = 1.3 and γm = 1.15 will typically have to be 
used.   
 
For a given load pattern, the variability in the 
capacity (which essentially is of an epistemic 
nature, i.e. it is caused by lack of knowledge) is 
typically rather small. Provided gross errors are 
avoided by an adequate quality assurance 
procedure, the distribution function reflecting the 
uncertainties in the capacity is typically well 
behaved, i.e. yc/γm is expected to be a robust 
estimate of the design capacity. 
 
For offshore structures, the nature of the load side 
of the problem is very different. The estimated 
characteristic load is of course also affected by 
epistemic type of uncertainties, but the dominating 
source of variability is the inherent randomness 
(aleatory variability) of the environmental 
processes. This means that with a very low annual 
probability, the structure can face loads 
significantly larger than the characteristic load - 
even if epistemic uncertainties where non-existing.   
 
The values given above for γf and γm are meant to 
account for the typical levels of total variability 
associated with xc and yc excluding gross error 
effects. Regarding the load side, for a linear 
response problem (i.e. there is a linear relation 
between the response process and the wave 
process) the coefficient of variation for the annual 
maximum load (standard deviation over mean) is 
typically around 10% for Norwegian waters 
(somewhat larger for e.g. Gulf of Mexico 
conditions).  If we multiply the value corresponding 
to an annual exceedance probability of 10-2 by the 
load factor of 1.3, the annual exceedance 
probability of γf xc is usually somewhat lower than 
10-4. For a non-linear response problem, say a 
quadratic problem, γf xc will typically correspond to 
an annual exceedance probability somewhat higher 
than 10-4. 
 
This illustration shows that (as far as γf is fixed) the 
annual exceedance probability of the design load is 
problem dependent. However, the annual 
exceedance probability will in most cases be within 
in a range around 10-4. The width of the range could 

possibly be close to an order of magnitude. This, 
together with the fact that there is a rather low 
probability for the actual structural capacity to be 
lower than the predicted design capacity, ensures 
that the annual failure probability of the structure is 
sufficiently low.  It is important to note that this is 
obtained provided the tails of the load and capacity 
distributions (upper tail of the load distribution and 
lower tail for the capacity) are well-behaved. The 
question thus becomes will the distribution tails 
always be well-behaved? 
 
Restricting the consideration to the load side of the 
problem, it is rather easy to think of scenarios 
resulting in a bad-behaving upper tail, i.e. a tail 
with a shape parameter changing abruptly for an 
annual exceedance probability well above 10-4. The 
difference between a well-behaving tail and a bad-
behaving tail is illustrated in Fig. 1.      
 
It is seen that for the well-behaving system, 

cf xγ will give a design load level corresponding to 
an annual exceedance probability typically around 
10-4. For the bad-behaving problem, however, it is 
seen that this is far from the case. The product, 

cf xγ , corresponds to an annual exceedance 
probability much larger than 10-4. For the bad-
behaving case, it can be difficult to verify a 
sufficiently low annual failure probability, in 
particular if it is a manned platform. 
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Fig. 1 Bad-behaved versus well-behaved response 
problem.   
 
Design codes typically require offshore structures 
to be controlled against various accidental loads, 
i.e. collision loads, loads due to fires and loads due 
to explosions. According to Norwegian Rules, 
structures are required to withstand accidental loads 
corresponding to an annual occurrence probability 
of 10-4. If the upper tail of the environmental load 
distribution is of a bad-behaving nature, Fig. 1 
illustrates that one may well have a situation where 
the environmental load corresponding to an annual 
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exceedance probability of 10-4 is much larger than 
the design load, γf xc, predicted by the ULS design 
recipe. In view of what is required for accidental 
type loading, it is reasonable to consider this as an 
accidental load scenario. An excessive 
environmental load may be just as dangerous for 
the structure as a collision load. 
 
In order to ensure that such cases are captured by 
the design process, the Norwegian Rules for 
offshore structures require that the ALS limit state 
also shall be applied to environmental loads. As for 
other accidental scenarios, the accidental loads are 
defined as the loads corresponding to an annual 
exceedance probability of 10-4, i.e. xc,ALS >  xc . 
 
The capacity may in connection with the ALS 
control be taken as the system failure capacity 
where also effects of plasticity are utilized, i.e. yc,ALS 
> yc . The limit state formulation when neglecting 
permanent and functional loads is given by Eq. (1), 
but with the ALS values of xc and yc introduced, γf 
and γm are in most cases set equal to 1.0. 
 
For old structures where the load pattern for one 
reason or the other is considerably changed, e.g. 
worsened wave conditions, reservoir subsidence, 
etc, one can very well foresee that a bad-behaving 
tail property is realized. Wave – deck impact is a 
mechanism that typically will result in a load – 
exceedance probability relation like the red curve in 
Fig. 1. A possible reason for experiencing a wave-
in-deck problem could be that the wave conditions 
are more severe than what was predicted as the 
platform was designed – either in terms of storm 
severity or in terms of asymmetry of the surface 
elevation process.  
 
As a conclusion, one may say that the ALS control 
with respect to environmental loads is a convenient 
way of ensuring a certain robustness against 
unforeseen environmental loads. Such a load 
scenario can be the case in connection with wave-
deck impacts for fixed and floating platforms and 
green water loads on the deck structures of a ship. 
An unforeseen wave-deck impact may for example 
occur in connection if a storm much more severe 
than the ULS design storm hit the area or if a freak 
wave hit the structure. It is difficult to foresee all 
possible severe wave scenarios. However, by 
ensuring that the structure can withstand 10-4 – 
probability environmental loads predicted in view 
of best available knowledge, it is likely that the 
structure will have some robustness against the 
most extreme environmental loads.  

3.   ESTIMATING 10-4 - PROBABILITY LOADS  
  
It is again important to note that according to 
Norwegian Rules and Regulations, the target annual 
exceedance probability refer to the load and not the 
environmental condition. This means that in 
connection with the ALS control against 
environmental loads, one should obtain reliable 
estimates for load corresponding to an annual 
exceedance probability of 10-4.  
 
In order to establish a consistent estimate for a load 
corresponding to a given annual exceedance 
probability, some sort of a long term response 
analysis is in principle required. A long term 
analysis can conveniently be done by selecting the 
3-hour maximum load as our target response 
quantity, i.e. the weather development is 
approximated by a sequence of stationary 3-hour 
events. This sequence is a “continuous” sequence if 
all adjacent 3-hour weather conditions are included. 
This is fine if the weather in the area under 
consideration can be considered as some sort of a 
one population type of weather. In hurricane 
governed areas, it may be more adequate to merely 
consider the sequences of 3-hour events 
representing the hurricane episodes.  
 
Denoting the conditional distribution of the 3-hour 
extreme value, X3h, given the sea state 
characteristics, Hs and Tp, by ),|(|3

thxF
psh THX

, the 

long term distribution of the 3-hour maximum (or 
the marginal distribution of the 3-hour maximum) 
is given by: 
 

∫ ∫=
h t

THTHXX dtdhthfthxFxF
pspsh

),(),|()( ,|max3

 (2) 

 
),( thf

psTH
 is the long term joint distribution of Hs 

and Tp representing the governing sea state 
population regarding extreme loads.  
 
As the long term distribution for the 3-hour 
maximum load is found, a consistent estimate for 
the value corresponding to an annual exceedance 
probability of q is found by solving: 
 

hqhX mqxF
h 3,3 /)(1

3
=−    (3) 

 
m3h is the expected annual number of 3-hour 
periods of the target population, i.e. if all 3-hour sea 
states is included in the target population, 
m3h=2920, while m3h is much lower if merely severe 
storms are considered.    
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In Eq. (2), ),( thf
psTH

 denotes the joint long term 

distribution of the metocean characteristics. This 
quantity accounts for the variability in the metocean 
conditions. The challenge related to this quantity is 
primarily the availability of a sufficient amount of 
simultaneous data, measurements or hindcast. The 
physics of the response problem is baked into the 
conditional distribution of X3h given the metocean 
conditions. For a very complex problem, this 
conditional distribution is by far the major 
challenge related with Eq. (2). In particular, if the 
problem is of an on-off nature. This will be the case 
if the problem includes rare wave-deck impacts. 
 
For complex problems where an extensive model 
test program is required in order to identify the 
short term structure of the conditional distribution, 
the execution of a full long term analysis, Eq. (2), 
will be costly and time consuming. For such a case 
the environmental contour line approach, see e.g. 
Haver and Kleiven (2004), is a convenient approach 
for obtaining reasonable estimates for the target 
response quantity, i.e the value of X3h 
corresponding to an annual exceedance probability 
of 10-4. For more information on this approach 
reference is made to Haver and Kleiven (2004) or 
references included therein. Here we will merely 
summarize the basic steps of the method and, 
thereafter, indicate the adequacy of the method 
when applied to a generic response problem 
exposed to a storm population type of climate.  
 
Using the environmental contour line approach, a 
reasonable estimate for the q-probability value (i.e. 
the response value corresponding to an annual 
exceedance probability of q) can be obtained by the 
following steps: 
 
1. Establish the q-probability contour or surface 

for the involved metocean characteristics, e.g. 
significant wave height and spectral peak 
period. 

2. Identify the most unfavourable metocean 
condition along the q-probability 
contour/surface. 

3. Establish the distribution function for the 3-
hour maximum response for the unfavourable 
metocean condition.  

4. An estimate for the q-probability response 
value is now obtained by the α-quantile of this 
extreme value distribution. If, say, two 
metocean characteristics are included, e.g. 
significant wave height and spectral peak 
period, an adequate value of α will typically be 
around. 0.90. 

 

It is to be stressed that this is an approximate 
method, a full long term analysis is required if the 
estimate is to be verified. Experience with the 
method seems to suggest that it is rather robust for 
most structural problems. From Eq. (2) it is seen 
that two essentially different sources of inherent 
randomness is included in a full long term analysis; 
variability related to the environmental conditions 
(long term variability) and the variability of the 3-
hour extreme value given the environment ( short 
term variability). The basic idea by the 
environmental contour line approach is that the 
relative importance of these two sources is more or 
less the same for all structural problems. The long 
term variability is the dominating source, while the 
short term variability is more or less some sort of a 
perturbation of the long term results. Moderate 
changes in the relative importance can be 
compensated for by varying α, see step 4 above, 
around 0.90. 
  
 
4.  CONTOUR LINES FOR A STORM CLIMATE 
 
In lack of access to data from a hurricane region, 
storms exceeding 8m significant wave heights for 
the Northern North Sea are selected as example 
data. For the years 1973 – 2006, the available data 
series includes 159 storm events with Hs > 8m 
where estimates both for Hs and Tp are available. 
Some few storms are obviously missing from this 
data base, but the series is considered acceptable for 
the present purposes. The observations include 
storm peaks up to 13m significant wave height. 
Mean and standard deviation of the storm sample 
are 9.18m and 0.96m, respectively. 
 
In order to establish contour lines, a joint 
distribution is needed for the included 
characteristics. Here we will merely include the 
storm peak values, Hsp and Tpp, as short term 
characteristics. An alternative would be to include 
all 3-hour events exceeding 8m as the sample for 
which a joint distribution of Hs and Tp is 
established, i.e. a storm is typically characterized by 
several pairs of Hs and Tp. As the full long term 
response analysis is carried out in a later chapter, all 
3-hour events exceeding 8m are accounted for. It is 
possible that the most consistent approach would be 
to establish contours for Hs and Tp including all data 
above 8m. But regarding the most interesting parts 
of the contours it is not expected to effect the 
location of the contours too much. 
 
The joint probability density function for Hsp and 
Tpp are conveniently written: 
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)|()(),( | htfhfthf
spppspppsp HTHTH =    (4) 

 
Since the actual storm sample is obtained by 
selecting all storm events above h0 = 8m significant 
wave height, it is assumed that (Hsp – h0)λ can be 
reasonably well modelled by an exponential 
distribution. A least square approach is selected as 
the fitting procedure. This gave as a result the 
following model: 

 

⎭
⎬
⎫

⎩
⎨
⎧ −

−−=
31.1

)8(exp1)(
2.1hhF

spH
  (5) 

 
Eq. (5) is compared to the sample distribution in 
Fig. 2. 
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Fig. 2 Fitted probabilistic model for Hsp.  

 
 
159 storm events during 33 years suggest that the 
expected no. of storms per year is 4.82. 
Accordingly, the storm peak significant wave 
height corresponding to an annual excedance 
probability of q is found by: 
 

82.4
)(1 qhF qH sp
=−    (6) 

 
Storm peaks corresponding to q = 10-2 and 10-4 are 
found to be 13.7m and 17.1m. These values are 
slightly lower than the values obtained adopting all 
3-hour data for the Northern North Sea.  
 
The conditional distribution of the storm peak 
spectral peak period, Tpp, given the storm peak 
significant wave height, Hsp, is assumed to follow a 
Gaussian distribution: 
 

⎪⎭

⎪
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⎫

⎪⎩

⎪
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⎧

⎟⎟
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⎛ −
−=

2

| )(
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1exp

)(2
1)|(

h
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h
htf

sppp HT σ
μ

σπ
 (7) 

 
The fitted Gaussian distribution is compared to the 
sample distribution for some few classes of Hsp in 
Fig. 3.  
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Fig. 3 Conditional distribution of Tpp given Hsp.  
 
 
In order to estimate the conditional mean and 
standard deviation, )(hμ  and )(hσ , beyond the 
range of observations, smoothed functions for the 
parameters are needed. The point estimates for the 
conditional mean and standard deviation are shown 
in Figs. 4 and 5. For the mean a linear regression 
seems reasonable, while for the standard deviation 
the average of the point estimates is used in the 
further modelling. The adopted values for )(hμ  
and )(hσ are given in Figs. 4 and 5, respectively. 
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Fig. 4 Conditional mean storm peak spectral peak 
period. 
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As the joint distribution of Hsp and Tpp, ),( thf

ppspTH
, 

is known, the joint distribution can be transformed 
over to a variable space consisting of independent 
standard Gaussian variables, U1 and U2. 
Associating U1 with Hsp and U2 with Tpp, this can be 
done using the Rosenblatt transformation, see e.g. 
Madsen et al. (1986): 
 
 )()( 1 hFu

spH=Φ    (8) 

)|()( |2 htFu
sppp HT=Φ    (9) 

 
where Φ( ) is the standard Gaussian distribution 
function. 
 
From Eqs. (8 and 9) one obtains a unique 
transformation from one point in the physical 
parameter space to a specific corresponding point in 
the standard Gaussian space (u-space) and vice 
versa. The reason for transforming the problem 
over to a standard Gaussian space is that contour 
lines corresponding to given exceedance 
probabilities are circles (or spheres) in the space 
defined by independent, standard Gaussian 
variables. The radius of the contour line 
corresponding to an exceedance probability per 
storm of q/4.82 is given by: 
 

)
82.4

(1 qrq −Φ−= −    (10) 

 
Regarding explanation of q and 4.82, reference is 
given to the text paragraph associated with Eq.(6). 
For further details regarding the determination of 
contour lines, reference is made to Winterstein et el. 
(1993) and Kleiven and Haver(2004). 
 
All combinations of u1 and u2 located on the 
contour line with radius rq, do correspond to an 
annual exceedance probability of q. By 
transforming these points back to the physical 
parameter space by means of Eqs. (8 and 9), the q-

probability contour lines for Hsp and Tpp are 
obtained. The contour lines obtained for the 
selected storm model are shown in Fig. 6 for q = 
0.63, q=0.1, q=0.01, q=0.001 and q=0.0001. 
(q=0.63 is defined to represent the 1-year contour 
line.) 
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Fig. 6 q-probability contour lines for the example 
storm climate.  
 
 
5.     EXAMPLE APPLICATION 
 
In order to illustrate the application of 
environmental contour lines, an rather idealized 
response problem is selected. It is assumed that the 
3-hour maximum, X3h, of a given response quantity 
is described by the Gumbel model: 
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The selected model will typically be a very good 
probabilistic model for the 3-hour maximum for 
most practical response problems. The nature of the 
response problem is reflected in the estimated 
response surfaces ),( tha  and ),( thβ . 
 
For the purpose of this illustration it is assumed that 
the response process is proportional with the square 
of the surface elevation process. Assuming that the 
wave process is close to a Gaussian process, i.e. 
Rayleigh distributed amplitudes (global maxima), 
the global maxima of the response process will be 
exponentially distributed. (Global maximum: 
Largest maximum between adjacent zero-up-
crossings.) Under these assumptions we will have: 
 

⎟
⎠
⎞

⎜
⎝
⎛=

t
thth

75.0
10800ln),(),( βα    (12) 

 
10800 is simply the duration of the 3-hour sea state 
in seconds and 0.75 is taken as the ratio between 
the zero up-crossing wave period and the spectral 
peak period. The number of response maxima in 3 
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hours is for the purpose of this study assumed equal 
to the number of waves during the sea state. The 
duration (or number of maxima) is not a very 
important quantity so in view of the purpose of this 
paper this approximation is of a sufficient accuracy. 
 
As a generic scale parameter, the following 
function is selected: 
 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

+=
80

)5.11(2cos11.0),( 402 thth πβ  (13) 

 
It is seen that the selected function represents a 
system where the scale parameter is proportional to 
the square of the significant wave height, h. 
Furthermore, it is seen that the system is 
particularly sensitive to a period band around 11.5s 
spectral peak period. The scale parameter is shown 
versus spectral peak period for two values of 
significant wave height in Fig. 7. 
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Fig. 7  Scale parameter of example 3-hour extreme 
value.  
 
Provided response surfaces for α and β are known, 
it is rather straight forward to carry out a full long 
term analysis. The long term distribution of X3h is 
given by: 
 

∫ ∫=
h t

THTHXX dtdhthfthxFxF
pspshh

),(),|()( |33

 (14) 

 
In order to be in consistence with the storm climate 
considered herein, ),( thf

psTH  is the joint 

probability density of all sea states exceeding 8m 
significant wave height. A joint model for Hs and Tp 
for all sea states is presented in Haver and Nyhus 
(1986). This model is representative for the 
offshore area covered by the present storm data 
population, but of course it is deduced based on 
data from a much shorter date period, 1973-1983. 
By simply truncating this model at Hs = 8m, a joint 
model for all sea states above 8m is obtained. For 
the range of concern, Hs > 8m, the marginal density 
function of Hs of this model reads: 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= −

λ
λ

λ ρρ
λ hhkhf

sH exp)( 1 , h > 8m  (15) 

 
The scaling constant, k, reads: 

)(1
1

0hF
k

sH−
=      (16) 

 
h0 is the truncation threshold and is here 8m. The 
parameters of the distribution are 822.2=ρ  
and 547.1=λ , Haver and Nyhus (1986). Thus 
k=1/0.0067 is found. 
 
The truncated model for Hs is compared to the 
empirical distribution in Fig. 8. The empirical 
distribution is obtained from all observations above 
8m Hs for the selected date series from the Northern 
North Sea 1973 – 2006. The model looks nice up to 
about 11m significant wave height. Above this level 
the model seems to slightly conservative, however, 
in view of the rather limited number of observations 
above 11m, the model is herein accepted. A 
simplified least square fit of the same model was 
carried out for the present sample and the resulting 
model was rather close to the model shown in Fig. 
8 (in fact it was apparently slightly more 
conservative regarding the upper tail as suggested 
by the storm data).  
 

Probabilistic model for all storm data above threshold
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Fig. 8 Truncated Haver and Nyhus model for Hs > 
8m compared to the empirical model. 
 
 
The conditional distribution is modelled by a log-
normal model, but the model parameters are such 
that the distribution is close to a Gaussian model for 
Hs > 8m. The model reads: 
 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

2

| )(
)(ln

2
1exp

2
1)|(

h
ht

t
htf

sp HT φ
μ

φπ
 (17) 

 
Where )(hμ and )(2 hφ are the conditional mean 
and variance of lnTp given Hs, respectively. 
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Smoothed functions are fitted to the point estimates 
for the various significant wave height classes and 
the recommendations in Haver and Nyhus (1986) 
are: 
 

)2(ln42.059.1)( ++= hhμ   (18) 
 

{ }34.12 13.0exp085.0005.0)( hh −+=φ  (19) 
 
In view of the present application, Eqs.(18 and 19) 
could have been simplified, but this will not be 
done herein. 
 
Utilizing Eq. (14) for combining the short term 
variability of the response extreme value and the 
long term wave climate variation described by the 
truncated Haver and Nyhus joint model, the long 
term (or marginal) distribution of X3h is obtained.  
The long term distribution in terms of the 
exceedance probability distribution is shown in Fig. 
9.  
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Fig. 9 Long term exceedance probability for an 
arbitrary 3-hour sea state above 8m.  
 
 
According to the original Haver and Nyhus joint 
model, the probability of exceeding 8m significant 
wave height by an arbitrary 3-hour sea state is 
0.0067. The expected (equivalent) annual number 
of 3-hour sea states above 8m is therefore 19.56. 
When considering all sea states above 8m, the 
exceedance probability corresponding to an annual 
exceedance probability of q then reads: 
 

56.198
qq mSeaAll =>

   (20) 

 
Using this relation, values corresponding to various 
annual exceedance probabilities are given in Table 
1. 
 
If the response problem under consideration is of a 
very complex nature, it is a challenge to establish 
the short term probabilistic model, e.g. a model like 

Eq.(11). In such cases extensive model tests or time 
domain computer simulations may be required. For 
such cases, it is convenient if the analysis could be 
narrowed to merely consider some few short term 
sea states. For this purpose, the environmental 
contour line approach could represent a possibility. 
 
 
Table 1 q-probability response extremes (return 
period in years in parenthesis) using the full long 
term approach 

Annual exceedance 
probability 

Response value 

0.63 (1 year) 155 
0.1 (10 years) 209 
0.01 (100 years) 266 
0.001 (1000 years) 327 
0.0001 (10000 years) 393 

 
 
The contour lines are determined in an earlier 
section of the paper. What remains to be done is to 
find which quantile of the short term extreme value 
analysis yields an adequate estimate of the target 
long term extreme value.  
 
A priori, in view of how the contours are prepared, 
we know that if we could neglect the short term 
variability, i.e. the short term extreme value 
distribution was extremely narrow, we could 
estimate the q-probability response by the median 
response for the most unfavourable sea state along 
the q-probability contour line. 
 
For practical problems we cannot neglect the short 
term variability. However, after we have identified 
the most unfavourable sea state along the contour 
line, the design sea state, we can compensate for 
the short term variability of this sea state and of all 
neighbouring (in the scatter diagram) sea states by 
selecting a higher quantile. The question is which 
quantile is adequate. To address this question for 
the storm climate case and the selected response 
example, certain quantiles are estimated for a 
number of sea states along the q-probability 
contours. Results are shown for q = 10-1, q = 10-2 , q 
= 10-3 and q=10-4 in Tables 2- 5, respectively. 
  
It is seen from Tables 2 and 3 that regarding an 
estimation of the 10-1 - and 10-2 – probability 
responses, the environmental contour approach in 
combination with the choice of the 90% quantile as 
the short term characteristic yield reasonable 
estimates. For most problems the relative 
importance of the short term variability increases 
with decreasing annual exceedance probability. 
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This is observed for the 10-1 - and 10-2 – probability 
estimates. The 90% value is slightly conservative 
for the 10-1 – probability value, while it is slightly 
non-conservative for the 10-2 – probability value. 
This tendency is strengthen as we consider 
predictions of more rare extremes. For the 10-3 – 
probability value, a quantile close to 95% is needed 
to obtain an adequate estimate, while for the 10-4 – 
probability value the an adequate quantile is 
slightly above 97.5%.  
 
Some few observations of interest can be made 
from this idealized example. It is clearly 
demonstrated that if a response quantity 
corresponding to a given exceedance probability is 
to be adequately estimated, the short variability of 
the response needs to be accounted for in addition 
to the slowly varying weather variability. If the 
median of the q-probability sea state is selected, a 
considerable under-prediction is the case. The 
magnitude of the under-prediction is problem 
dependent, but for a non linear problem similar to 
this example, the under-prediction may be from 
20% for the 10-1 – probability value to about 40% 
for the 10-4 – probability response. If the median 
response of the worst sea state along the 10-4 – 
probability contour line is adopted as the accidental 
environmental load, the annual exceedance 
probability for this load is about 0.0053, i.e. a 
number far above the typical accidental load 
occurrence probability level of 10-4. 
 
One should also note the observed tendency of a 
higher required quantile if target extremes 
corresponding to a decreasing annual exceedance 
probability are to be accurately estimated. 
 
Finally, it should be pointed out that further work is 
recommended for practical response applications. It 
should also be further considered whether the 
contour lines should be established from a joint 
model reflecting all observations above the storm 
threshold and not merely the storm peak. Good 
quality data series including a number of rather 
severe storms are required if reliable probabilistic 
models shall be obtained. The present study lacks 
full consistence since the contour lines are 
established from storm peak data, while a truncated 
version of an existing joint model is adopted for the 
full long term analysis. In the future a consistent 
joint model of all sea states above threshold should 
be established. This will remove some uncertainties 
related to the contour line estimates and the 
estimates obtained using a full long term analysis.      

6   CONCLUSIONS 
 
Reasons for using the accidental load principle also 
with respect to natural loads are discussed. It is 
suggested that accidental environmental loads 
should be taken as loads corresponding to an annual 
exceedance probability of 10-4, which is the 
requirement baked into the Norwegian Rules and 
Regulations. It is indicated that provided the load – 
annual exceedance probability relation does not 
show any abrupt changes in a worsening sense for 
annual probabilities between 10-4 and 10-2, the 
accidental environmental loads will not effect the 
structural design. Introducing a requirement that the 
structure shall withstand environmental loads 
corresponding to an annual exceedance probability 
of 10-4 will ensure a certain robustness against 
unforeseen large environmental loads, e.g. due an 
unexpected severe storm event, an unexpected large 
wave event in a storm, or a larger reservoir 
subsidence than foreseen at the design stage. 
 
Typical scenarios where abrupt changes can be 
expected are cases where wave–deck impacts or 
freeboard exceedances can take place for low 
annual probabilities.  
 
In order to predict loads and load effects 
corresponding to an annual exceedance probability, 
a full long term analysis is in principle required. In 
connection with accidental load scenarios this can 
be complicated since extensive model tests may be 
required in order to reveal the short term structure 
of the response. It is suggested that the 
environmental contour line principle can be used as 
an approximate method. The adequacy of this 
approach is indicated for a generic response 
problem exposed to a peak over threshold type of 
wave climate. Establishing q-probability contour 
lines for the storm peak significant wave height and 
spectral peak period, adequate estimates for the 
long term extremes can be obtained by selecting a 
high quantile value for the 3-hour extreme value 
distributions. For accidental loads (10-4 – 
probability loads) a quantile around 97.5% seems to 
be adequate for the example case. The results 
clearly demonstrates that if the median 3-hour 
extreme value of the worst sea state along the 10-4 – 
probability contour line is selected as the accidental 
load, the annual probability of exceeding this load 
is more than an order of magnitude higher than the 
target accidental occurrence probabilities of the 
Norwegian Rules and Regulations. 
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Table 2 Various quantiles for the worst range of the 0.1- probability contour line 
0.1-probability contour sea state Selected quantiles  (%) 
h  (m) t  (s) 50 85 90 95 97.5 
9.82 11.00 143.4 170.9 179.2 192.8 206.3 
10.05 11.25 151.2 180.4 189.1 203.6 217.8 
10.35 11.60 160.3 191.4 200.6 216.0 231.2 
10.67 12.02 167.0 199.5 209.2 225.4 241.2 
10.95 12.42 169.2 202.2 212.1 228.5 244.6 
11.31 13.02 165.2 197.7 207.5 223.6 239.4 
11.62 13.68 153.9 184.4 193.5 208.6 223.5 
Full long term analysis 209 
 
Table 3 Various quantiles for the worst range of the 0.01- probability contour line 
0.01 – probability contour sea state Selected quantiles   (%) 
h  (m) t   (m) 50 85 90 95 97.5 
10.95 10.94 177.4 211.5 221.7 238.6 255.2 
11.36 11.41 193.6 231.0 242.2 260.7 279.0 
11.80 11.95 205.2 245.1 257.1 276.9 296.3 
12.15 12.41 208.6 249.3 261.5 281.7 301.5 
12.51 12.93 205.5 245.8 257.9 277.9 297.6 
12.89 13.53 195.0 233.5 245.1 264.2 282.9 
Full long term analysis 266 
 
Table 4 Various quantiles for the worst range of the 0.001- probability contour line 
0.001 – probability contour sea state Selected quantiles   (%) 
h  (m) t   (m) 50 85 90 95 97.5 
12.02 11.02 215.0 256.4 268.7 289.3 309.4 
12.47 11.52 233.1 278.2 291.6 314.0 336.0 
12.94 12.08 244.3 291.8 306.0 329.6 352.8 
13.26 12.49 246.1 294.2 308.6 332.5 355.9 
13.59 12.93 242.5 290.2 304.4 328.1 351.3 
14.12 13.67 227.4 272.5 285.9 308.3 330.2 
Full long term analysis 327 
 
Table 5 Various quantiles for the worst range of the 0.0001- probability contour line 
0.0001 – probability contour sea state Selected quantiles   (%) 
h  (m) t   (m) 50 85 90 95 97.5 
12.75 10.84 239.4 285.3 299.0 321.8 325.1 
13.12 11.24 257.9 307.7 322.5 347.2 352.0 
13.70 11.89 277.8 331.7 347.9 374.7 381.9 
14.11 12.37 282.6 337.8 354.3 381.7 390.5 
14.53 12.88 279.1 334.0 350.3 377.5 387.9 
14.96 13.43 267.7 320.6 336.4 362.6 374.2 
17.06 17.89 206.5 249.0 261.6 282.7 303.4 
Full long term analysis 393 
 


