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1. INTRODUCTION. THE SPLIT BALANCE MODEL OF WIND-DRIVEN SEAS

The Hasselmann equation (Hasselmann 1962, Hasselmann 1963)

∂Nk

∂t
+∇kωk∇rNk = Snl + Sf (1)

is a core of all the modern wind-wave prediction models. It describes evolution of wave action spectral
density N(k, t) due to four-wave nonlinear resonant interactions (the so-called collision integral Snl)
and external forcing Sf . The fundamental solutions of the conservative Hasselmann equation have been
found in the sixties (Zakharov & Filonenko 1966, Zakharov 1966, Zakharov & Zaslavskii 1982). These
solutions represent remarkable examples of the so-called flux solutions that provide constant fluxes of
the first integrals: energy, action and momentum from infinitely small or large scales to opposite infinity.
Energy and momentum are conserved formally only within the Hasselmann equation: they can leak to
high frequency. Thus, the equation is not “complete”, describe an “open system” and, in this sense,
is not physically correct. The external input Sf appears to be of key importance for the Hasselmann
equation and makes the Hasselmann equation both physically and mathematically correct. This is in
contrast with the classic Boltzmann equation for ideal gas dynamics which solutions are unique at any
initial data and conserve action, energy and momentum.

A correct account of external forcing is not a trivial problem for the case of wind-driven waves:
the wave growth and dissipation are governed by multiple physical mechanisms which mathematical
and physical description is not well elaborated yet. Experimental parameterizations of Sf by different
authors give dispersion of magnitudes that exceeds the magnitude of Sf itself (see Hsiao & Shemdin
1983, Plant 1982, Snyder et al. 1981, Stewart 1974, Donelan & Pierson-jr. 1987). The basic feature of
wind-wave dynamics can help to resolve the difficulty of description of external forcing: in a wide range
of physical conditions the nonlinear transfer term Snl dominates over external forcing term Sf . Thus,
an asymptotic method can be developed for the Hasselmann equation (1). The procedure “split” the
wind-wave balance into two parts: spectra are described by conservative Hasselmann equation

∂Nk

∂t
+∇kωk∇rNk = Snl (2)

while external forcing gives a boundary condition for quantities averaged over the whole angle-frequency
space (Badulin et al. 2002, Pushkarev, Resio & Zakharov 2003, Badulin et al. 2005)

〈∂Nk

∂t
+∇kωk∇rNk〉 = 〈Sf 〉 (3)

A family of self-similar solutions of the system (2,3) can be considered as a generalization of the
Kolmogorov-Zakharov solutions (Badulin et al. 2005). These solutions provide cascades of wave ac-
tion, energy and momentum that depend both on frequency and time (fetch). The feature of the
solutions is in rigid link of the solutions themselves with the spectral fluxes quite similar to the classic
Kolmogorov-Zakharov solutions (Zakharov & Filonenko 1966, Zakharov & Zaslavskii 1982).

The validity of the split balance model (2,3) in terms of self-similarity features of the solutions of the
full Hasselmann equation has been demonstrated in our previous papers (Badulin et al. 2002, Badulin



et al. 2005). In the present paper we show that solutions of the Hasselmann equation as well as the
corresponding spectral fluxes have certain features of quasi-universality. This fact allows us to formulate
an asymptotic growth law of wind-driven waves that relates total wave energy (the same is valid for
wave action and momentum) with the corresponding spectral flux at infinitely high frequency. The
latter characteristic can be associated with the total wave input.

In the present paper we focus on the case of the homogeneous Hasselmann equation

∂N(k, t)
∂t

= Snl + Sf (4)

Similar results can be formulated for the stationary counterpart (the so-called fetch-limited case)

∂ω

∂k

∂N(k, t)
∂x

= Snl + Sf (5)

In § 2 we give definitions and general relationships for self-similar solutions and the corresponding spectral
fluxes for the case of duration-limited growth (4). In § 3 we present numerical results that illustrate
quasi-universality of the solutions and fluxes and allows us to formulate the asymptotic wave growth law.
This growth law contains a parameter — an analogue of the classic Kolmogorov constants that should
be found numerically. In § 4 we cosider sea wave experiments that justify our theoretical findings. In § 5
we discuss Toba’s law as a particular case of wind-wave growth and recent experimental study (Resio,
Long & Vincent 2004) which use very close approach to the analysis of balance of wind-driven waves.
§ 6 gives a summary of the study.

2. SELF-SIMILAR SOLUTIONS OF THE HASSELMANN EQUATION AS A GENERALIZATION
OF THE KOLMOGOROV-ZAKHAROV SOLUTIONS

2.1 Self-similar solutions for duration-limited case

The split balance model (2,3) admits a two-parametric family of self-similar solutions for duration-limited
case

N = aτ tατ Φβτ (ξ); ξ = bτktβτ

ατ = (19βτ − 2)/4; (6)
bτ = a4/19

τ

The relationship between exponents of spectral growth ατ and downshift βτ and between magnitude of
spectrum aτ and spectral width bτ are fixed by homogeneity property of collision integral only.

The “shape” function Φβτ (ξ) is to be determined from an integro-differential equation
[
ατΦβτ + βτξ∇ξΦβτ

]
= π

∫
dξ1dξ2dξ3|Tξξ1ξ2ξ3

|2

× δ(ξ + ξ1 − ξ2 − ξ3)δ(
√
|ξ|+

√
|ξ1| −

√
|ξ2| −

√
|ξ3|) (7)

× [Φβτ (ξ1)Φβτ (ξ2)Φβτ (ξ3) + Φβτ (ξ)Φβτ (ξ2)Φβτ (ξ3)
− Φβτ (ξ)Φβτ (ξ1)Φβτ (ξ2)− Φβτ (ξ)Φβτ (ξ1)Φβτ (ξ3)]

We assume that physically relevant solutions of (7) exist and focus upon higher order approximation of
the evolution problem. The form of solutions (6) provides a power-like growth of total wave action (or
energy). The balance equation (3) can be satisfied trivially

∫
N(k)dk = a11/19trτ

∫
Φβτ (ξ)dξ (8)

Integration in (8) implies the whole wavevector space. For total wave energy one has

ε =
∫

ω(k)N(k)dk = a9/19
τ g1/2tpτ

∫
|ξ|1/2Φβτ (ξ)dξ (9)



and mean frequency evolves as follows

ωm =
∫

ω(k)ε(k)dk
ε

= a−2/19
τ g1/2t−qτ

∫ |ξ|Φβτ
(ξ)dξ∫ |ξ|1/2Φβτ (ξ)dξ

(10)

Assuming
max(Φβτ

) = Φβτ
(1) (11)

one can define peak frequency
ωp = a−2/19

τ g1/2t−qτ (12)

Mean frequency ωm and the peak one ωp are proportional to each other for the self-similar solutions (6)
as it is seen from (10,12). Exponents of spectral growth pτ , rτ and frequency downshift qτ appear to be
linked to each other by simple linear relations

rτ = ατ − 2βτ

pτ = ατ − 5βτ/2 (13)
qτ = βτ/2

The self-similar solutions (6) predict power-law dependencies (9,10,12) quite similar to experimental
dependences of wind-wave growth (see e.g. Davidan et al. 1995, Babanin & Soloviev 1998). A key
feature of theoretical exponents is the linear dependence of exponent of total wave energy growth pτ on
downshift exponent qτ

pτ =
9qτ − 1

2
(14)

while in experimental dependencies this linkage of exponents pτ and qτ is not assumed.
Note, that validity of the asymptotic split balance model is difficult to check analytically. A trivial

estimate can be derived from the condition that nonlinear transfer term should dominate at large time
over wave input and dissipation which linear increments are finite (see Badulin et al. 2005, sect. 5.2 for
details). It gives rough estimates

pτ > 4/19; qτ > 3/19 (15)

i.e. the total wave input can decay with time but not too fast.

2.2 Self-similarity of spectral fluxes

Spectral fluxes of wave action, energy and momentum can be introduced in a standard way (see Zakharov
& Pushkarev 1999, Zakharov 2005a)

Q(ω) =
∫ ω

ωl

∫ π

−π

2ω3

g2
Snl(k)dωdθ (16)

P (ω) = −
∫ ω

ωl

∫ π

−π

2ω4

g2
Snl(k)dωdθ (17)

Kx(ω) = −
∫ ω

ωl

∫ π

−π

2ω5

g3
Snl(k) cos θdωdθ (18)



Self-similarity of the solutions of the kinetic equation means, evidently, self-similarity of spectral fluxes.
It allows one to obtain remarkable expressions for the spectral fluxes in terms of shape functions PHIβ(ξ)

Q(ω, t)
a11/19g3/2tsq

= Qβ(ξ) =

π |ξ|∫∫

−π 0

(β|ξ|2 ∂Φβ

∂|ξ| + α|ξ|Φβ)d|ξ|dθ

=




π∫

−π

β|ξ|2Φβdθ

∣∣∣∣∣∣

|ξ|

0

+ rτ

π |ξ|∫∫

−π 0

|ξ|Φβd|ξ|dθ


 (19)

P (ω, t)
a9/19g2tsp

= Pβ(ξ) = −
π |ξ|∫∫

−π 0

(β|ξ|5/2 ∂Φβ

∂|ξ| + α|ξ|3/2Φβ)d|ξ|dθ =

−



π∫

−π

β|ξ|5/2Φβ(ξ)dθ

∣∣∣∣∣∣

|ξ|

0

+ pτ

π |ξ|∫∫

−π 0

|ξ|3/2Φβd|ξ|dθ


 (20)

K(ω, t)
a7/19g3/2tsm

= Kβ(ξ) = −
π |ξ|∫∫

−π 0

(β|ξ|3 ∂Φβ

∂|ξ| + α|ξ|2Φβ)d|ξ|dθ =

−



π∫

−π

β|ξ|3Φβ(ξ)dθ

∣∣∣∣∣∣

|ξ|

0

+ mτ

π |ξ|∫∫

−π 0

|ξ|2Φβd|ξ|dθ


 (21)

The result of the integration is of fundamental interest: for positive exponents of wave action growth rτ

and energy growth pτ the signs of fluxes Q and P are fixed and correspond to inverse cascade regime, i.e.
Q > 0, P < 0. The momentum flux is negative (inverse cascade) as well for rates rτ > 2/7 (pτ > 1/7).
Note, that the small rates rτ < 7/19 are of little interest for our analysis because the smallness of source
terms is questionable in this case (see Badulin et al. 2005). The case of swell is of special interest. The
parameter pτ is negative and both types of cascades are co-existing for wave energy and momentum:
inverse cascade in a low frequency band (small |ξ|) and a leakage of energy and momentum (direct
cascade) in high frequencies.

2.3 Spectra vs spectral fluxes

Having self-similar dependencies for solutions (6) and fluxes (19) one can construct easily time-independent
quantities which are direct analogues of the classic Kolmogorov’s constants (Zakharov 1966, Zakharov
1999). In terms of frequency spectra it takes

C
(β)
q (ξ) =

E(ω, θ, t)ω11/3g4/3

Q(ω, t)1/3
=

Φβ(ξ)|ξ|11/3

Qβ(ξ)1/3
(22)

C
(β)
p (ξ) =

E(ω, θ, t)ω4g4/3

P (ω, t)1/3
=

Φβ(ξ)|ξ|4
Pβ(ξ)1/3

(23)

C
(β)
m (ξ) =

E(ω, θ, t)ω13/3g4/3

K(ω, t)1/3
=

Φβ(ξ)ξ25/6

Kβ(ξ)1/3
(24)

The values Cp(ξ), Cq(ξ), Cm(ξ) are direct generalizations of the Kolmogorov constants (see Zakharov
& Filonenko 1966, Zakharov & Zaslavskii 1982, Zakharov 2005b). They depend on the self-similarity
index r (or β) and on self-similarity argument ξ which is proportional to non-dimensional wavenumber
(or wave frequency).
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Figure 1: Down-wind solution N(k), compensated frequency spectra of energy E(ω)ω11/3, wave action
flux Q and the resulting estimate of the Kolmogorov ratio Cq for solutions of the Hasselmann equation
(1) at different times. Wave input (Hsiao & Shemdin 1983), wind speed 10 m·s−1, time 4 (dotted), 8
(dash-dot), 16 (dashed), 32 hours (hard line)



Fig. 1 illustrates the asymptotic property of numerical solutions of the full Hasselmann equation
(1) with the wave input (Hsiao & Shemdin 1983). The most rapid tendency to the asymptotic state is
observed for the vicinity of spectral peak where nonlinear transfer has maximal magnitudes and, thus,
perturbation to the model of split balance (2,3) dealing with smearing of wave input in wave scales is
minimal. Similar strong tendency to an asymptotic state is seen for high frequencies where strong relax-
ation to weakly turbulent quasi-stationary asymptotics given by classic Zakharov-Kolmogorov cascade
solutions (Zakharov & Filonenko 1966, Zakharov & Zaslavskii 1982) occurs due to high magnitudes of
kernels of nonlinear interactions. The most pronounced deviations from the asymptotic behavior are
seen in an intermediate wave range for the compensated spectra. This was explained in (Badulin et al.
2005) as an effect of a non-self-similar background in wave spectra. Wave action spectral fluxes appear
to be not so sensitive to the background.

The self-similarity of solutions and fluxes makes possible alternative formulations of the basic physical
feature of the problem: rigid link of wave spectra and spectral fluxes. The “boundary” condition of the
split balance model (3) uses an integral wave input 〈Sf 〉, i.e. a spectral flux at infinitely high frequencies
(|ξ| = ω/ωp →∞) which is a power-law function of time (8,9). The characteristic frequency of the wave
spectra, mean or peak frequency of the spectral shape, is also a power-law function. Accepting the split
balance model it is logical to use these two values, total wave input and characteristic wave frequency,
to use self-similarity of the problem “in full”: to exclude an explicit dependence of the solutions (6) on
time. Thus, after trivial algebra one gets for energy spectra corresponding to the self-similar solutions
(6)

ε(ω, θ)ω5
∗

g2
= α∗ss

(
ω3
∗〈dε/dt〉

g2

)1/3

Φβ(ω/ω∗, θ) (25)

Expression (25) has a typical form of the second type or incomplete self-similarity: there is a non-trivial
dependence on one self-similar argument, non-dimensional frequency ω/ω∗, — the shape function Φβ and
a monotonic dependence on the second argument, non-dimensional integral wave input ω3

∗〈dε/dt〉/g2.
Both arguments represent the characteristic scales of the split balance model (2,3). Note the resem-
blance of the theoretical form (25) and conventional parameterizations of wind-wave spectra (see e.g.
Hasselmann et al. 1973) which are, in fact, have the same second-type self-similarity form

ε(ω, θ)ω5
p

g2
= αexp(Cp/Uh)καΦexp(ω/ωp, θ, γ, σa, σb, . . .) (26)

The key difference of the theoretical and experimental results is in inner scaling: in the split balance
model we follow here the scale is a total wave input, in experimental parameterizations the spectral
magnitude is scaled by a characteristic wind speed (Uh — wind speed at a reference height or u∗

— tension velocity of the atmospheric boundary layer). The wind scaling implies an incorporation
of atmospheric dynamics into the model of wind-wave growth while the proposed split balance model
split, in fact, the wind over waves dynamics and an inherent dynamics of weakly nonlinear waves. The
difference in physics is illustrated by an additional arguments γ, σa, σb, . . ., i.e. by dependence of spectral
shapes Φexp on features of sea state: wave age, wind variability (Abdalla & Cavaleri 2002) etc. In our
theoretical formulation the shape function Φβ is determined by wave growth rate rτ only.

The self-similarity solutions (25) can be re-written for total energy as well

εω4
∗

g2
= αss

(
ω3
∗dε/dt

g2

)1/3

(27)

Angle brackets are omitted here for total energy and input. Stress again, that in the weakly turbulent
form (27) the parameter αss is not constant: it can depend on the index of self-similarity pτ because of
dependence of “shape function” Φβ on pτ . The spectral shapes are quasi-universal in duration-limited
case (Badulin et al. 2002, Badulin et al. 2005) and, very likely, in fetch-limited case as well. Thus, one
can expect a weak dependence of the self-similarity parameter αss on exponents of spectral growth. It
makes the relation (27) useful for experimental verification.

Weak dependence of “shape function” Φβ and parameter αss on self-similarity index pτ (pχ) has
another important consequence: the self-similarity laws (25,27), very likely, work well not in a particular



case of power-like dependence of total flux on time (fetch) only but in general case of arbitrary time-
(fetch-) dependence of total net forcing dε/dt. This note just reflects our intuitive vision of the problem:
self-similar solutions, as a rule, correspond to rather robust physical regimes and the features of the
solutions can be observed at rather general physical conditions. In this sense we should emphasize once
more weakly turbulent nature of the laws (25, 27) rather than their links with particular self-similar
solutions of a set of equations (2,3).

3. NUMERICAL VERIFICATION OF WIND-WAVE GROWTH LAW

To check validity of the weakly turbulent laws (25,27) we start with duration-limited case. This case
is extremely “inconvenient” for field studies and the list of representative experiments is rather short.
This bad luck will be made up by results of extensive numerical study (Badulin et al. 2005). Time
series of the numerical experiments allow one to validate the weakly turbulent dependences, first of
all, in terms of relationships for self-similar solutions (14, 27) by simple fitting the series by power-like
dependences. This somewhat restrictive approach can be avoided as far as we appreciate the fact of the
weakly turbulent relationship of energy and flux (25) that does not imply any power-like dependences
but a tendency of wave spectra to an asymptotic behaviour controlled mostly by dominating nonlinear
transfer. We present this way of analysis as energy-flux diagram method.

The key property of the split balance model — independence of the wave growth on details of wave in-
put function allows one to use “academic” setup in numerical simulations (Pushkarev, Resio & Zakharov
2003; Badulin et al. 2005) to reproduce the self-similar power-law wave growth (6) in the best way.
The “realistic” solutions with conventional input functions (Snyder et al. 1981; Donelan & Pierson-jr.
1987; Plant 1982; Stewart 1974; Hsiao & Shemdin 1983) allow one to quantify the departure from the
particular self-similar regimes and to make conclusions on validity of weakly turbulent wave growth laws
in general case. The validity check for self-similar solutions consists of two parts. First of all, we check
the link of exponents of total energy growth pτ and of characteristic frequency downshift qτ (14). This
is in line with recent analysis of the fetch-limited growth (Zakharov 2002, Zakharov 2005b).

3.1 Exponents of duration-limited growth. Wave frequency scaling

The split balance model gives a family of solutions (6) that depends on self-similarity index pτ . To
reproduce the solutions for different pτ “academic” setup can be used (Pushkarev, Resio & Zakharov
2003, Badulin et al. 2005). The idea of this setup is to put wave input in a narrow high-frequency
domain ωl < ω < ωh to free maximal space for weakly turbulent development of wave spectrum. Total
energy grows as follows

dε

dt
∼

∫ 2π

0

∫ ωh

ωl

tpinc−1ε(ω, θ)dωθ (28)

where (pinc − 1) is exponent of wave energy increment. Note, that exponent pinc is not equal to the
resulting exponent of total energy growth pτ due to dependence of ε(ω, θ) on time. In “realistic” numerical
experiments (Snyder et al. 1981, Donelan & Pierson-jr. 1987, Plant 1982, Stewart 1974, Hsiao & Shemdin
1983) increments do not depend on time and the observed exponents pτ are less than 1.

“Academic” setup allows one to cover a wide range of possible indexes of self-similarity

0.191 ≤ pτ ≤ 1.754; 0.170 ≤ qτ ≤ 0.470

while the range of “realistic” runs is essentially narrower

0.669 ≤ pτ ≤ 0.835; 0.243 ≤ qτ ≤ 0.300

(see Table 1). Swell (wave action Ntot = const) represents a special case of self-similar solution.
Generally, all the numerical points are slightly above the theoretical straight line (solid line in fig. 2)

both for “realistic” and “academic” runs. Moreover, the “realistic” points appear to be very close to
the Toba 3/2 law in case of mean frequency scaling (left fig. 2). The departure from the theoretical
dependence can be explained easily if we take into account the asymptotic nature of the wave growth
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Figure 2: Left — exponents p and q for power-law approximations of total energy and mean frequency
of the kinetic equation solutions. Right — exponents pexp and qexp derived from exponents of spectral
peak growth ατ and βτ (see eq.6,14). © — Isotropic “academic” runs; ¦ — Anisotropic “academic”
runs; ¤ — “Real” wave pumping. Sets of exponents for constant total wave action (3/11, 8/11) and
total wave energy (1/3, 1) fluxes are given by stars. Hard line shows theoretical dependence of pτ on qτ ,
dashed line corresponds to Toba’s 3/2 law

and the composite nature of the wave spectrum: different parts of wave spectrum attain its self-similar
regimes for different times or do not attain these regimes at all due to different composition of wave
input and nonlinear transfer. Thus, the resulting wave spectrum is comprised of a self-similar “core”
and a non-self-similar “background” (see Badulin et al. 2005, sect. 6.2.3).

Exponents pτ , qτ were estimated by two methods. The first method is based on total energy and
mean frequency dependencies: the results are shown in left panel fig. 2. An alternative method of
estimate of exponents pτ , qτ was developed to trace features of the self-similar “core” of the numerical
solutions. Exponent qτ was estimated as qτ = βτ/2 (see 14) by tracing the wave action peak frequency
and pτ was found in a similar way from exponent ατ of wave action magnitude growth (14). The new
estimates of pτ , qτ collapse to the theoretical dependence remarkably well (right fig. 2).

Strong dispersion of “academic” points relatively to the theoretical line (left fig. 2, especially for
pτ > 1) shows strong effect of non-self-similar background of wave spectra on exponents pτ , qτ that
cannot be avoided by special setup of numerical experiment: an adequate scaling of wave spectra growth
is required to reveal self-similarity features of wave development. The spectral peak characteristics,
evidently, fit this requirement better than mean wave frequency. This conclusion is valid for treatment
of experimental results: specific methods of measurements can emphasize spectral peak characteristics
or, on the contrary, relied on the mean (integral) features. Thus, the observations should be related very
carefully to the theoretical predictions.

3.2 Parameter αss for duration-limited self-similar solutions

Theoretical relationship for total energy and net wave input (27) being rewritten for power-law depen-
dencies

ε = ε0t
p; ω = ω0t

−q. (29)

(all values are dimensional) gives a simple expression for αss

α(1)
ss =

(
ε2
0ω

9
0

pτg4

)1/3

tzτ (30)



Run qτ pτ zτ ε0 ω0 α
(1)
ss α

(2)
ss

ac 7/22 0.170 0.191 -0.049 1.534e-01 4.559 2.245 1.232

ac 5/11 0.181 0.303 -0.008 4.606e-02 5.203 1.283 1.086

ac 8/11 0.254 0.713 -0.047 4.106e-04 12.91 0.633 1.058

ac 19/22 0.289 0.924 -0.082 3.695e-05 19.72 0.416 1.038

ac 1 0.343 1.138 -0.063 3.282e-06 36.73 0.499 0.995

ac 47/44 0.355 1.169 0.048 8.647e-08 82.52 0.487 0.883

ac 25/22 0.366 1.256 0.073 1.164e-08 116.7 0.361 0.841

ac 17/11 0.470 1.754 0.093 1.649e-10 294.2 0.302 0.886

Snyder et al. 10 m/sec 0.247 0.669 0.038 6.740e-04 10.94 0.548 0.843

Snyder et al. 20 m/sec 0.300 0.835 -0.010 1.772e-03 10.84 0.944 0.858

Donelan 10 m/sec 0.243 0.694 0.067 5.848e-04 10.36 0.418 0.841

Hsiao & Shemdin 10 m/sec 0.247 0.685 -0.049 1.694e-04 14.50 0.504 0.878

Hsiao & Shemdin 20 m/sec 0.251 0.699 -0.046 2.303e-03 8.261 0.528 0.863

Hsiao& Shemdin 30 m/sec 0.263 0.734 -0.034 7.799e-03 6.635 0.607 0.855

Stewart 10m/sec 0.281 0.759 -0.004 9.877e-05 19.58 0.838 0.794

Table 1: Exponents and pre-exponents (dimensional) of wind wave growth and self-similarity parameters
αss for numerical runs. Spectral peak frequency was used for scaling the self-similarity law (25). q(1)

is calculated as an exponent of power-like approximation (29), q(2) is estimated from the theoretical
relation (14). Two different estimates of αss are given in accordance with formulas (30, 32). Series AC
are “academic” for different rates of wave energy growth pinc. Type of wave input parameterization and
wind speed are shown for “realistic” cases.

where
zτ =

2pτ − 9qτ + 1
3

(31)

and superscript “(1)” for αss is introduced for the particular case of self-similar solutions (6). Having
independent estimates of exponents pτ , qτ in numerical runs we, generally, have a dependence of α

(1)
ss on

time. As soon as exponents pτ and qτ satisfy theoretical relationship (14) exponent zτ vanishes and α
(1)
ss

becomes time-independent. Thus, a consistent estimate α
(1)
ss of self-similarity parameter can be obtained

assuming one of exponents of wave growth “more reliable” and using theoretical relation to determine
other one. We shall refer to pτ as a reference one unless otherwise stated. In fact, the departure of
exponents from theoretical dependence is relatively small in our case: high power of ω0 in (30) affects
the resulting estimates much stronger.

3.3 Method of energy-flux diagrams

More general expression that does not imply power-law dependence of energy and characteristic frequency
on time can be proposed as follows (see 27)

α(2)
ss = lim

t→∞
εω3
∗

(g4dε/dt)1/3
(32)

Definition (32) looks more attractive and physically transparent as far as it is just a tangent of non-
dimensional wave energy and non-dimensional net wave input in the left and right-hand sides of (27).
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Figure 3: Energy-flux dependences in “academic” experiments for different theoretical exponents of wave
growth pτ (time exponents of wave increments pinc given by eq.28 are shown in legends). Left panel —
mean frequency is used for scaling, right panel — peak frequency scales wave energy and wave energy
flux. The tendency to self-similarity law is seen much better when peak frequency ωp is used for scaling.
Weak oscillations of trajectories in right panel are due to interpolation from numerical grid. Trajectories
are given for t > 1800s.
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Figure 4: Energy-flux dependences in “real” numerical experiments for different parameterizations of
wave input (shown in legends). Left panel — mean frequency is used for scaling, right — peak frequency
scales wave energy and wave flux. The tendency to self-similarity law is seen better for stronger winds
and wave input functions (Donelan & Pierson-jr. 1987; Snyder et al. 1981). Trajectories are given for
t > 1800 s.
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Figure 5: Self-similarity parameter αss for numerical solutions for duration-limited case. Circles —
“academic” wave pumping, triangles — conventional parameterizations of wave input at different wind
speeds. Left — mean frequency ωm is used as a characteristic frequency in (27), right — peak frequency
ωp scaling. Full symbols correspond to estimates (32) and empty ones — to (30).

The existence of the finite limit of α
(2)
ss can be considered as an independent argument for the validity

of the split balance model and, hence, for the dominating role of nonlinear transfer in wave spectra. It
is useful to present the corresponding asymptotic analysis in the form of energy-flux diagrams.

Fig. 3 shows energy-flux diagram for the set of “academic” numerical runs. Wave input indexes pinc

(see 28) are shown in legend. Mean frequency ωm is used for scaling in left panel while the peak frequency
ωp — in right one. The wave field evolves towards the coordinate origin with time. Trajectories show
clear tendency to linear dependence in both panels as it is predicted by the weakly turbulent law (27). For
mean frequency scaling (left panel) this tendency is slower and not so pronounced for pinc > 1. The peak
frequency scaling (right panel) validates the asymptotic law (27) more definitely. An important result
of fig. 3 is a weak dependence of the coefficient of proportionality αss — the self-similarity parameter in
(27) on self-similarity index pτ in very wide range of “academic” setup. It is of great value for practical
problems and for cases of realistic wave pumping in numerical runs where the corresponding pτ varies
in narrower range.

Fig. 4 presents the energy-flux diagrams for different conventional parameterizations of wave input
(Hsiao & Shemdin 1983, Snyder et al. 1981, Donelan & Pierson-jr. 1987, Stewart 1974) in a range of
wind speeds 10− 30m · s−1. The same tendency to the weakly turbulent energy-flux relationship (27) is
seen remarkably well for both frequency scalings (mean frequency — left, peak one — right). As it was
expected the asymptotic slope αss appeared to be very close for all the numerical experiments presented
in fig.4 due to relatively low variability of exponent pτ .

As far as dissimilarity between the “academic” and “realistic” runs is concerned, there is no essential
difference in their tendency to the asymptotic behavior. The special academic setup can shorten, in
some cases, the time of relaxation to the asymptotic state both due to relatively small non-self-similar
fraction of the solutions and due to generally higher (sometimes, intentionally too high) increments of
wave growth.

3.4 Self-similarity parameter αss and pre-exponents of wind-wave growth

Table 1 summarizes results of verification of the self-similarity law (27) for duration-limited case. Down-
shift exponent qτ was calculated from time evolution of the spectral peak, linear interpolation was used
because of relatively poor frequency grid (71 points in range 0.02− 2 Hz) and slowness of downshift it-
self. Energy exponent pτ is defined for total energy and, thus, cumulates evolution of self-similar “core”



and non-self-similar background. Exponent zτ (see 31) represents deviation of pτ , qτ from theoretical
relationship (14). Pre-exponents ε0, ω0 in (29) are given dimensional to avoid the problem of traditional
wind speed scaling for “academic” runs. Two last columns present different estimates of self-similarity
parameter αss from (30) and (32). These estimates are presented in fig. 5 for different frequency scalings
(left — mean, right — peak frequency).

As it was expected, all the “academic” runs show a gradual trend of αss with regard to pτ irrespec-
tively to frequency scaling and definitions (30, 32). “Realistic” cases demonstrate a good conformity
with the “academic” reference results. Quality and reliability of the estimates is a subject of special
discussion. The definition of αss as an asymptotic limit (32) looks more consistent. It does not depend
on choice of initial moment t0 and on fitting procedures for approximations (29). The fitting errors due
to these, at the first look, unimportant reasons, can affect estimates of (30) dramatically as long as errors
in frequency pre-exponent ω0 in in power 3 (!!!) can lead to essentially higher dispersion of results as
compared with “asymptotic” definition (32).

4. EXPERIMENTAL VERIFICATION OF WIND-WAVE GROWTH

Over the years, a great number of field experiments have been undertaken to parameterise behaviour of
integral wave properties (wave variance and peak or mean frequency) as the waves develop. Absolute
majority of the integral dependences correspond to an ideal stationary case of wave field development in
one spatial direction only, while conditions in the perpendicular direction remain homogeneous. Strictly
speaking, a relatively small part of these experiments can be related to fetch-limited case: in many of
them, the dependence on fetch was simulated by measuring the waves at a single point. Variation of the
dimensionless fetch was often achieved by varying the wind speed rather than wave fetch. Therefore,
dependences of the wave energy and the peak frequency on the fetch are only as good as the Kitaigorodskii
(1962,1983) scaling by the wind speed is correct. Even then, such scaling is bound to bring about
a significant scatter both within individual parameterisations and between different experiments (e.g.
Kahma & Calkoen, 1992) because the ideal wave development conditions are never met as mentioned
earlier in this paper.

Here, we would like to note one positive feature of fetch-limited setup (we mean, obviously, “true”
fetch-limited measurements along a number of spatially distributed points) rather than its disadvantages.
First of all, such setup has a reference point — a coastline where the wind blows from. It cannot resolve
completely the problem of correct account of initial stage of wave development but the problem itself
appears to be not so critical as in the duration-limited case: at initial stage waves are relatively short
and, hence, slow. Thus, the initial stage for fetch-limited case is relatively short as compared to the
duration-limited case. We cannot appreciate the value of this fact in its full extent: numerical study of
fetch-limited development has not been done so far and the experimental data are too coarse to identify
different stages of wind-wave development.

4.1 Remarks on available data

As we mentioned above the experimental dependencies of wind-wave growth is the only background
of our study of fetch-limited case: no numerical results are available up to now to give an alternative
verification of self-similarity relationships in the spirit of the above analysis of duration-limited case.
Recent analysis by Zakharov (2005) showed that exponents of fetch-limited growth follow remarkably
well the self-similarity relationship for 6 fetch-limited experiments. It is not the case for an extensive set
of experiments presented in this paper. Moreover, for 50 % of the cases selected by Zakharov (2005) a
coincidence rather than a firm agreement takes place: methods of measurements and data analysis could
corrupt “true” wave growth dependencies significantly.

At the first glance, the experimental data presented as power-law approximations (27) are “ready-to-
use” for verification of the theoretical results. First, the exponents pχ, qχ are provided in explicit form
and the corresponding theoretical linkage of these exponents

pχ =
10qχ − 1

2
(33)



can be checked trivially in the spirit of Zakharov (2005). Secondly, the total energy flux dε/dt (the
convective derivative) can be calculated analytically. In non-dimensional variables with constant scales
of energy, frequency and fetch it gives (compare 30)

α(f)
ss =

(
2ε̃2

0ω̃
10
0

pχ

)1/3

χzχ (34)

where
zχ =

2pχ − 10qχ + 1
3

(35)

Formula (34) for self-similarity parameter αss in fetch-limited case looks quite similarly to the duration-
limited one (30) and becomes fetch-independent when theoretical relationship for exponents pχ, qχ is
satisfied, i.e. zχ in (35) vanishes. It should be stressed that (34) requires scaling by constant value of
wind speed Uh in experimental dependencies. The crafty scaling of wave data by instantaneous wind
speed or other parameters of air-sea interaction (Davidan 1996) hinders correct weakly turbulent wave
physics and makes the corresponding relationships (e.g. 27) useless. Dimensional data are more useful
in our case but, generally, unavailable. The scaling can corrupt weakly nonlinear physics in two ways:
first, by using instantaneous wind speed scaling, as it was criticized above, secondly, by collecting data
from different sources. The latter is often made to have a “more representative” set. Data for different
conditions of air-sea interaction (atmosphere stability, gustiness etc.) and, hence, for different rates of
wave growth being put together are not supposed to satisfy our theoretical relationships.

Wave tank data deserve a special comment. These data are included in a few experimental wave
growth dependencies. Strictly speaking such dependencies should be removed from our analysis un-
conditionally. First, they correspond to very short fetches (a few hundreds wave lengths at the best)
and, thus, cannot be related to sea conditions. Secondly, they cannot be related to the kinetic descrip-
tion (within the Hasselmann equation) both because of short time of wave development and because of
quasi-unidirectional propagation where essentially two-dimensional four-wave resonances responsible for
nonlinear transfer can be suppressed or modified essentially.

4.2 Experimental dependencies of fetch-limited wind-wave grow growth

In this paper we use more than 20 experimental dependences of total wave energy and wave frequency
collected in fetch-limited experiments. All the dependences are listed in three groups (see Tables 2, 3)
and the groups are given by different symbols in the corresponding figures 6, 7.

The first list (group I in Tables 2, 3) presents the “cleanest” (from the point of view of our theory)
results. According to the theory, different conditions of wind-wave development may require different
sets of exponents pχ, qχ to describe the respective wave growth. Therefore, if the different conditions
were initially combined into a single data set, we do not expect results based on such data conform with
our theory well. Within the first group, we shall refer to the Black Sea experiment (Efimov, Krivinskii &
Soloviev 1986, Babanin & Soloviev 1998) as a reference one, mainly, because the raw data are available for
re-analysis. Also, the Black Sea growth dependences agree most closely with the theoretical predictions.
All other series of the group are based on measurements at relatively homogeneous conditions of wave
growth and measurements in a number of points: the dependence on non-dimensional fetch was not
simulated by variation of the wind speed only.

The series of the second list are similar to those of the primary list and demonstrate a reasonably
good conformance with the theoretical predictions, but due to data analysis procedures, as outlined in
the subsection below, may have suffered some lack of accuracy in terms of their applicability to the
theory. Results of this group can be used for our analysis with some caution.

The third list is an antagonist of the first two groups: the collected dependences were obtained
for composite data sets, included laboratory data or/and used one-point measurements with further
conversion into dependences on dimensionless fetch by varying the wind speed. These data are not
expected to conform to our theory and therefore should not be used for comparison and verification of
the dependences for the self-similar wave growth.

The dependencies from recent paper by Zakharov (2005) are given in bold in Table 2,3. Note, that
only two of these six dependencies fall into the “good lists”.
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4.3 Exponents of wind-wave growth in fetch-limited experiments

Like in the analysis of duration-limited case, we follow a series of validity checks to show conformance of
experimental results to theortical predictions. The results of the first check — exponents of wind-wave
growth are presented in Table 2 and in fig. 6 The exponents are given by different symbols for the three
groups in order to explain our preferences when creating the separate lists for experimental dependencies.

The first group (1–7 in Table 2) demonstrates the best conformance with the theoretical link of
exponents pχ, qχ and a slight overestimate of exponent pχ if compared with its theoretical values. Note,
that results of the Black Sea experiment, Dobson et al. (1989), Walsh et al. (1989), Wen et al. (1989),
Kahma and Calkoen (1992), Kahma & Pettersson (1994) produce very different pχ and qχ exponents
being rather close to the theoretical line and, thus, demonstrating a universality of the wave growth
dependences in the sense of weakly turbulent law (27) but not in the rigid framework of the “experimental
tradition”.

Data points of Davidan (1980), Donelan et al. (1985) and SMB CERC (Young 1999) exhibit the
same positive bias as well and are in the close proximity to the theoretical relationship, but deviate
somewhat further from the line. This positive bias is reproduced in the two lists of the fetch-limited
experiments and in the duration-limited numerical runs (see fig. 2) and can possibly be explained by the
effect of widening of developing wave spectra (e.g. Babanin & Soloviev 1998, Belberov et al. 1983). It is
interesting to note, that the regular positive bias is absent in group III of experimental dependencies (see
fig. 6). Obviously, for this group fine effects of the spectra widening are buried as a result of inclusion
the data which are not consistent with the self-similar development at all.

Reasons for possible deterioration of group II can be suggested. Davidan (1980) used the JONSWAP
data set having removed the laboratory data which were employed in the original JONSWAP paper
(Hasselmann et al. 1973) to obtain their final dependencies. Scatter of Donelan et al. (1985) data was
discussed in detail by Kahma & Calkoen (1992). They argued that this data set could have an additional
scatter due to the fact that the stable and unstable stratification data points were used together. Kahma
& Calkoen (1992) also pointed out that the Lake Ontario pχ could have suffered an additional loss of
accuracy because Donelan et al. (1985) did not obtain it directly and therefore for their data it is derived
from the energy versus peak frequency dependence which is subject to strong spurious correlations. The



Experiment ε̃0 × 107 pχ ω̃0 qχ zχ

1. Black Sea 4.41 0.89 15.14 0.275 0.010
2. Dobson et al. (1989) 12.7 0.75 10.68 0.24 0.033

3. Walsh (1989) US coast 1.86 1. 14.45 0.29 0.033
I 4. Wen et al. (1989) 18.9 0.7 10.4 0.233 0.023

5. Kahma & Calkoen (1992) unstable 5.4 0.94 14.2 0.28 0.027
6. Kahma & Calkoen (1992) stable 9.3 0.76 12. 0.24 0.040
7. Kahma & Pettersson (1994) 5.3 0.93 12.66 0.28 0.020

8. Davidan(1980) 4.363 1. 16.02 0.28 0.067
II 9. Donelan et al. (1985) 8.41 0.76 11.6 0.23 0.073

10. SMB CERC (1977) by Young (1999) 7.82 0.84 10.82 0.25 0.060

11. Mitsuyasu (1971) 2.89 1.008 19.72 0.33 -0.095

12. JONSWAP (1973) 1.6 1. 21.99 0.33 -0.010

13. JONSWAP by Phillips (1977) 2.6 1. 11.18 0.25 0.167
14. Kahma (1981,1986) rapid growth 3.6 1. 20 0.33 -0.100

III 15. Kahma (1986) average growth 2.0 1.0 22 0.33 -0.100
16. Kahma & Calkoen (1992) composite 5.2 0.9 13.7 0.27 0.033
17. Evans and Kibblewhite (1990) neutral 2.6 0.872 18.72 0.3 -0.085
18. Evans and Kibblewhite (1990) stable 5.9 0.786 16.27 0.28 -0.076
19. Ross (1978) unstable, Michigan 1.2 1.1 11.94 0.27 0.167
20. Liu & Ross (1980) stratification 0.68 1.1 12.88 0.27 0.167
21. Donelan et al. (1992) St. Claire 1.7 1.0 22.62 0.33 0.023

22. Liu & Ross (1980) corr. Babanin 77 0.52 2.36 0.08 0.413

23. Hwang & Wang (2004, 2006) 6.19 0.81 11.86 0.237 0.084

Table 2: Exponents and pre-exponents of wind-wave growth in fetch-limited experiments. Cases studied
in (Zakharov 2005b) are given in bold



SMB data were obtained in early years of wave research, soon after WWII and are reported here as they
are formulated by Young (1999). At those days, measurements and data processing procedures were far
less accurate than they are now and even were in the 70s. The SMB CERC curves can be expected to
produce some lack of accuracy. In fact, they behave surprisingly well, particularly if compared to those
obtained in the 70s and early 80s. Perhaps, one of the possible reasons for such a good conformation
with sophisticated dependences of late 80s and 90s is due to the fact that, because of very limiting data
recording and processing capacities, the bulk processing was not possible and therefore the data would
go through careful selection.

The latter remark is important when considering the third group in Table 2 (nn.11–23). The bulk
processing became an option with developing data recording and computer processing facilities and it did
not always play a positive role. Kahma & Calkoen (1992) in their thorough investigation of differences
between various parameterisations of wave integral properties demonstrated that, for JONSWAP data,
many “noisy” spectra were included. In terms of our approach the “noisy” means mixing together
occurrences of different growth parameters which leads to an unpredictable average. Once Kahma and
Calkoen (1992) performed the separation of different subsets, scatter of the reanalysed data significantly
decreased and parameters of the dependencies noticeably changed.

What can cause large deviations, according to our theory, is the use in final JONSWAP dependen-
cies laboratory data. Such data are completely irrelevant to our model of wind-wave sea, the kinetic
description of water waves becomes invalid at typical rather short scales of wave development in wave
tanks comprising at very best a few hundreds of wave periods. It is interesting to note here that they
seemed to have corrupted the peak frequency dependence more than they did the energy dependence.
Once Davidan (1980) removed the laboratory data, value of qχ changed from 0.33 down to 0.28 whereas
value of pχ stayed unchanged.

Thorough analysis of the experimental data is a subject of separate paper. Here we give just a
summary of our analysis of the set of dependencies shown in fig. 6. We should say that dependencies
nn.1–7 of Table 2 correspond very closely to the predictions of the weak-turbulence theory and therefore
were most likely obtained in conditions of self-similar wave development. Dependencies nn.8–10 although
exhibit some loss of accuracy, are still very close to the theory and can be used with some caution. The
outliers of fig. 6 (nn.11–23) either had non-similar stages embedded or some analysis features imposed
which make them unusable for our further analysis.

4.4 Pre-exponents of fetch-limited wind-wave growth

Fig. 7 shows the estimated parameter of self-similarity αss derived from the experimental dependences
discussed above as a function of pχ in accordance with (34). Thus, based on the experimental depen-
dences, range of “legitimate” changes of the parameter αss is from 0.3 to 0.65 (or up to 0.75 if the
Davidan, 1980 point-at-question is taken into account). We should point out that this range should not
be treated as a statistical scatter only around some universal value. Different values of αss are possible
because it is a function of the rate of change of the flux as was mentioned in the previous sections. Vari-
ation of αss for the reference group I is comparable with the duration-limited counterparts for “realistic”
numerical runs (see sect. 3.1.3 and Table 1).

These fetch-limited estimates of α
(f)
ss (eq.34) are slightly below the duration-limited estimates of α

(2)
ss

presented in right fig. 5 and very close to α
(1)
ss based on similar power-law fit of numerical growth curves

(eq. 30). The proximity of duration- and fetch-limited estimates of the self-similarity parameter αss

confirms (may be, somewhat indirectly) the general nature of the weakly turbulent relationship (27):
the link of wave energy to the flux (total net input) does not depend on the wave growth setup. In
absence of numerical results for the fetch-limited wave development this agreement of the estimates is
of special value.

Note, that consistent estimates of αss in the fetch-limited case look remarkable and can be considered
as a recognition of high quality of experimental measurements of wave growth: formula (34) contains
the pre-exponent of power fit in high power ω̃

10/3
0 and the pre-exponent ε̃0 which varies by more than an

order of magnitude for group I. The latter makes estimates of αss very sensitive to errors of power-law
fit. At the same time, all our estimates for “good” groups I and II fall into a fairly narrow range of



Experiment pχ qth
χ zτ αss

1. Black Sea 0.89 0.278 0.010 0.652
2. Dobson et al. (1989) 0.75 0.250 0.033 0.436

3. Walsh (1989), US coast 1.0 0.30 0.033 0.302
I 4. Wen et al.(1989) 0.7 0.24 0.023 0.533

5. Kahma & Calkoen (1992) unstable 0.94 0.288 0.027 0.591
6. Kahma & Calkoen stable 0.76 0.252 0.040 0.520
7. Kahma and Pettersson (1994) 0.93 0.286 0.02 0.400

8. Davidan(1980) 1.0 0.300 0.067 0.751
II 9. Donelan et al. 1985 0.76 0.252 0.073 0.435

10. SMB CERC (1977) by Young 0.84 0.268 0.060 0.318

11. Mitsuyasu (1971) 1.008 0.302 -0.095 1.138

12. JONSWAP (1973) 1.0 0.300 -0.100 1.106

13. JONSWAP by Phillips (1977) 1.0 0.300 0.167 0.160
14. Kahma (1981,1986) rapid growth 1.0 0.300 -0.100 1.385

III 15. Kahma (1986) average growth 1.0 0.300 -0.100 1.286
16. Kahma & Calkoen (1992) composite 0.90 0.280 0.033 0.519
17. Evans and Kibblewhite (1990), neutral 0.872 0.274 -0.085 0.936
18. Evans and Kibblewhite (1990), stable 0.786 0.257 -0.076 1.048
19. Ross (1978), unstable, Michigan 1.1 0.320 0.167 0.116
20. Liu & Ross (1980), stratification 1.1 0.320 0.167 0.102
21. Donelan et al. (1992) 1.0 0.30 -0.100 1.266

22. Liu & Ross (1980), corr. Babanin 0.52 0.204 0.413 0.011
23. Hwang & Wang (2004,2006) 0.81 0.262 0.084 0.373

Table 3: Exponents of wind-wave growth and self-similarity parameter αss in fetch-limited experiments.
qth
χ is calculated from theoretical relation (33) for the observed pχ, zτ is detuning exponent in formula

for self-similarity parameter αss. Cases studied in (Zakharov 2005b) are given in bold
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Figure 7: Dependence of αss on p for fetch-limited experiments.

values.

5. DISCUSSION

5.1 The Toba local balance law of wind-wave growth

Multiple mechanisms and complexity of air-sea interaction nudge researchers to focus on cumbersome
models of wind wave growth rather than on compact physics of wind-wave development. The only
attempt to construct a concise wave growth law has been undertaken by Toba (1972,1973) in his series of
papers in Journ. Ocean. Soc. Japan. The 3/2 Toba’s law was derived from “the local balance” of weakly
nonlinear Stokes drift of water particles and wind stress. The Hasselmann kinetic equation and the
associated nonlinear transfer escaped Toba’s attention completely. Nevertheless, the conclusions showed
a fairly good agreement with observations. Formally, the Toba law can be considered, as a particular
case of the weakly turbulent law (27).

Assuming net input dε/dt be constant one immediately gets the Toba 3/2 law from (27): it cor-
responds to the stationary energy input through wave development. Let us take the Toba law in the
following form (Toba 1997)

Hs = B(gu∗)1/2T 3/2
s

where subscript “s” for period and height means “significant” and B = 0.062. Converting significant
wave height and wave period into the conventional energy and peak frequency, one has

εω4
p

g2
=

(
π9B6u3

∗
g

ω3
p

g2

)1/3

Comparing with our law (25) one can obtain the rate of total energy accumulated by waves

dε

dt
=

π9B6u3
∗

g
= 0.0017

u3
∗
g

(36)



An evident substitution should be made, taking into account a relative weakness of wind-wave interac-
tions due to differences of air and water densities,

dε

dt
= 1.3

ρair

ρwater

u3
∗
g

(37)

The estimate looks reasonable. Significance of the interpretation of the Toba law in terms of the present
theory, however, extends far beyond an interesting academic exercise. Since the fetch-limited develop-
ment commonly exhibits pχ ≈ 1 (see Table 2), i.e. approximately constant energy flux, friction velocity
u∗ can be used to estimate this flux in such special circumstances according to (37). We must stress here
that it is not true in general case: exponents pχ ≈ 3/2 were observed in experiments in Black (Babanin
& Soloviev 1998) and Norwegian Seas (Sanders 1976) that corresponds to energy flux growing with time
as
√

t.

5.2 Equilibrium range balance of wind-driven waves (Resio, Long & Vincent 2004)

It is important to note that Toba in his study did not refer to the Hasselmann equation and to the corre-
sponding physical mechanisms of nonlinear cascading. In his local balance model he linked nonlinearity
of waves (Stokes drift) with wind stress. Within the presented approach we are not able (have no rights,
in fact) to relate directly wave growth with characteristics of atmosphere (e.g. u∗). Within the split
wave balance we operate with the fluxes of energy (action, momentum) accumulated by the waves, but
not with those coming from the wind (i.e. wind input minus dissipation). Thus, in this way, we split,
in fact, an inherent dynamics of waves and dynamics of air-sea interaction. A consistent development of
our approach, thus, implies a specific “flux language” to fit the wave-wave and air-sea interactions. An
important step in this direction has been made recently in (Resio, Long & Vincent 2004).

Authors (Resio, Long & Vincent 2004) related spectral fluxes in the equilibrium range of wind-
wave spectra (the frequency range of quasi-constant fluxes) to “an effective, or net, wind input”. The
proposed parameterization of the net input (eq.19 in Resio, Long & Vincent 2004) is consistent with
Toba’s estimates (37) and allows one to estimate the total energy from our weakly turbulent law (27)

εω4
p

g2
= αssα4C

1/3
nl

ua − u0

Cp
(38)

where Cp = g/ωp — phase speed of spectral peak waves. In accordance with (Resio, Long & Vincent
2004) Cnl = 0.4, α4 = 0.0053. Accepting the estimate αss = 0.5 for the self-similarity parameter one has

εω4
p

g2
= 0.001

ua − u0

Cp
(39)

that is very close to the JONSWAP parameterization of wind-wave energy (e.g. Hasselmann et al.
1973, Babanin & Soloviev 1998). Thus, our approach extends results by (Resio, Long & Vincent 2004):
the self-similarity and quasi-universality of wind-wave spectra makes valid links of spectra and fluxes in
an equilibrium domain for the whole wind-wave range.

6. CONCLUSIONS

We finalize this paper by summarising our results:

i. First of all, the key theoretical result should be emphasized: evolution of growing waves is asymp-
totically governed by the weakly turbulent law (27,25). This law dictates dependence of the wave
energy on spectral flux (total net input). The weakly turbulent law (27) does not depend on such
features of wave development as duration- or fetch-limited setup: estimates of the self-similarity
parameter αss from numerical experiments and from experimental dependences for duration- and
fetch-limited cases gave remarkably close values;



ii. The theory was verified by means of field experiment data. Available integral fetch-limited depen-
dencies (23 cases) were re-analysed and related to the weakly turbulent self-similar relationships
(27,14,33). Those corresponding to the self-similar development were identified on the basis of
physics, data quality and initial data processing procedures. We should stress that we did not rely
on theoretical results when sorting out the dependencies as “good” or “bad”;

iii. The self-similarity parameter αss should be viewed, if compared with exponents pτ(χ), qτ(χ), as a
more rigid feature of wave development: in spite of difficulties of estimating αss from experimental
and numerical results (e.g. high powers of ωp in 30,34) it varies in a relatively narrow range which
reflects the universality of energy-flux relationship. Experimental estimates of αss were obtained
for the first time. For stable or slowly growing wind speeds we can recommend at the moment
αss = 0.55 ± 0.2: more detailed estimates of this basic physical parameter is a subject of further
studies. It was confirmed that fetch-limited and time-limited values of αss are close which is
consistent with the basic concept of weakly turbulent scenario: the concept of rigid link between
energy and energy flux.

Other results should be also listed here as important and useful consequences of the general weakly
turbulent physics of wind-wave growth.

1. A novel approach to the analysis of wind-wave data — method of energy-flux diagram — was
proposed as an effective tool to identify both qualitatively and quantitatively weakly turbulent
stage of wind-wave evolution. Its efficiency was illustrated for results of numerical solutions of the
Hasselmann equation. Capacity of the method for analysis of a wider set of field experiment data
and its consistency with conventional data processing routines should be tested.

2. Analysis of a particular case of constant energy input which corresponds to the Toba 3/2 law shows
an important implication of our results for the wind-sea studies: the weakly turbulent relation of
energy and flux allows one to determine the net flux coming to waves, based on knowledge of
the wave energy. Recent experimental results (Resio, Long & Vincent 2004) gives a remarkable
example of consistency of such approach and show its good prospects.

The study refines and essentially extends the concept of universality of wind-wave growth as such:
parameters of wave growth are not fixed values for some “ideal” conditions but depend on magnitudes
and rates of fluxes of energy (wave action, momentum) to waves and, thus, can be predicted for a much
broader range of conditions of growing wind-driven waves.

The research presented in this paper was conducted under the U.S. Army Corps of Engineers, RDT&E
program, grant DACA 42-00-C0044, ONR grant N00014-98-1-0070 and NSF grant NDMS0072803, IN-
TAS grant 8014 and Russian Foundation for Basic Research N04-05-64784, ofi-a-05-05-08027 and Russian
Academy Program “Mathematical methods of nonlinear dynamics”. This support is gratefully acknowl-
edged.
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