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1.     INTRODUCTION 
 
Governing evolution of a wind wave field are at least the net 
effects of energy input from the wind inS , the conservative 
rearrangement of energy among wave numbers k  and 
directions θ  of the two-dimensional wave spectrum 

( ),F k θ  by non-linear wave interactions nlS , and losses by 

dissipative processes dsS .  Each of these source terms 
involves some very complicated physics in an environment 
where requisite detailed measurements are extremely 
difficult to make.  Conventional wave measurements 
provide only indirect clues as to the nature of inS  and dsS , 
and energy fluxes owing to nlS  tend to confound 
interpretation of such observations.  Consequently, modeling 
characterizations of inS  and dsS  are subjects of ongoing 
research.  Fortunately, theoretical considerations by 
Hasselmann (1961), Zakharov and Filonenko (1966), Webb 
(1978), Herterich and Hasselmann (1980) and others, in 
conjunction with an efficient computational algorithm by 
Tracy and Resio (1982) enable us to explore the nature of 

nlS  in great detail.  Thus, if we acquire sufficiently detailed 
conventional wave measurements in a broad enough variety 
of environments, we can compute the effect of nlS  directly, 
and thereby deduce some of the effects of at least the sum of 
the remaining source terms, if not their individual 
contributions.  Here, we describe an initial step in this 
approach, the acquisition and preliminary statistical 
reduction of frequency-direction spectra of small waves in a 
shallow, enclosed basin. 
 
2.     MOTIVATION FOR AN EXPERIMENT 
 
An important part of the wave spectrum is the equilibrium 
range of wave numbers, where, under reasonably steady 
winds, the net effect of the sum of source terms yields a one-
dimensional spectrum ( )F k  that scales simply with 

gravitational acceleration g  and a velocity parameter u  
that is related to the wind.  Scaling arguments by Toba 
(1972), Kitaigorodskii (1983) and Resio (1987), 
observations by Toba (1973), M itsuyasu (1980), Forrestall 
(1981) and Donelan, et al. (1985), and studies using the 
numerical form of nlS  by Resio and Perrie (1991) and Resio 
et al. (2001) provide compelling arguments for an 
equilibrium-range spectrum of the form 
 

( ) 5 / 2F k kβ −= ,                             (1) 
 

where β  is given (from scaling alone) by 
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With a proper choice of u , the dimensionless coefficient α  
is constant.  The wave number span of the equilibrium range 
corresponds to cyclic frequency f  roughly satisfying 
1.5 3p pf f f< < , where pf  is spectral peak frequency, and, 

using linear dispersion, 2 24 tanhf gk khπ = , where h  is 
water depth.  Note that the one-dimensional frequency 

spectrum ( )E f  is related to ( )F k  by ( ) ( )2

g

E f F k
c
π
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where gc  is group velocity.  The form of (2) in combination 
with (1) then leads (in deep water) to 
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which is a form commonly used with measured spectra. 
 
In work leading to the paper by Resio, et al. (2004), the 
present authors sought an appropriate expression for u  in 
(2) that yielded a reasonably constant α  in observed ( )F k  
spanning a wide range of scales.  In the initial stages of that 
work, data from two gauges at the U.S. Army Engineer 
Research and Development Center Field Research Facility 
(FRF) on the northern Outer Banks of North Carolina 
provided estimates of β  for ocean waves.  Fig. 1 shows the 
locations of these gauges.  Gauge 630 is a Waverider buoy 
located about 6 km from shore in about 21 m water depth.  
Gauge 625 is a Baylor gauge (a surface-piercing, 
impedance-type wave gauge) suspended beneath the 
seaward end of a pier that extends about 0.5 km from shore 
in a local (pier-scoured) depth of about 8 m.  Data from 
Lake George, Australia (Babanin, et al. 2001 (with a 
representative set of ( )E f  kindly provided by those 

authors) enabled estimates of β  from a bounded water 
body having much smaller scales than those of the FRF data.  
Water depths at the measurement site about 50 m from the 
east shore of Lake George ranged from 0.6 m to 1.1 m in 
data shown here. 
 
Estimates of β  arise simply from observed wave spectra 
with an average given by 
 
 



 
Fig. 1.  Site map of FRF and vicinity. 
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where 1f  and 2f  are bounding frequencies appropriate to an 
equilibrium range.  For the FRF 630, we used the 
conventional 1 1.5 pf f=  and 2 3 pf f= .  For both FRF 625 

and Lake George, there was increased energy near 2 pf , 

suggesting shoaling effects that would bias β  estimates, so 
the frequency range for (4) was adjusted so that 1 2.5 pf f=  

and 2f  was the highest sampled frequency that was free of 
possible capillary effects (0.5 Hz for FRF 625 and 5 Hz for 
Lake George). 
 
Correlating velocity scales for use in (2) included friction 
velocity *u , wind speed at 10 m elevation 10u , and, 

following Resio, et al. (1999), wind speed uλ  at an 
elevation equal to a fixed fraction λ  ( 0.065= ) of the 
spectral peak wavelength.  All winds were assumed to 
follow a neutrally stratified logarithmic profile having a von 
Karman coefficient 0.41κ =  and subject to a Charnock 
(1955) surface roughness 2

0 *cz u gα=  with 0.015cα = .  
Thus, 
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where pk  is spectral peak wave number. 
 

Correlation of estimated β  from the three data sources with 
velocity scales *u , 10u  and uλ  yielded the highest 

correlation coefficient 2r  when we used uλ .  That 
correlation is shown in Fig. 2, which shows that while the 
ocean data follow the correlation line with some 
consistency, the Lake George data deviate in a clearly 
systematic way.  This result suggests at least three 
possibilities:  the best of our three candidate velocity scales 
does not apply to small-scale waves, our method for 
estimating β  from Lake George data is incorrect, or the 
Lake George environment does not yield waves that 
conform to the model expressed by (1) and (2). 

 
Fig. 2.  Preliminary correlation of β  with uλ , showing the 

difference of Lake George from ocean results. 
 
To test these hypotheses, we needed data from another 
source with an environment like that of Lake George.  
Lacking such data, we were motivated to conduct a new 
investigation.  A description of the resulting experiment is 
the subject of this paper, but we note here that wind data and 

( )F k  were acquired and β  were estimated from those data 

using (4) for frequencies in the range 1.5 pf  to 3 pf .  A 

correlation with uλ , like that shown in Fig. 2, revealed a 
behavior very much like that of the Lake George data, and 
likewise not in good agreement with data from the other 
sources. 
 
Subsequently, it was realized that the similarity and scaling 
arguments given by Resio and Perrie (1989) would better 
suffice to link the wide range of scales represented by the 
collective data sets.  Resio and Perrie (1989) deduce that a 
velocity scale for the flux of energy from air to water is 

more appropriately expressed as ( )1 / 32
* pu c , where pc  is 

spectral peak phase speed and serves to act as a scale for 
wave phase speeds in the vicinity of the spectral peak.  



Generalization of the velocity scale suggests that forms like 

( )1 / 32
10 pu c  and ( )1 / 32

pu cλ  may also apply.  Correlations of 

estimated β  with velocity scales ( )1 / 32
* pu c , ( )1 / 32

10 pu c  and 

( )1 / 32
pu cλ  all yielded similar results with correlation 

coefficients much higher than that shown in Fig. 2.  The best 
overall characterization of the data employed the scale 

( )1 / 32
pu cλ .  Fig. 3 shows a correlation between ( )1 / 32

pu cλ  and 

β  for the three data sets shown in Fig. 2 plus the data 
described in this paper and data from two National Data 
Buoy Center (NDBC) platforms (41001 in the western North 
Atlantic ocean and 46035 in the Bering Sea). 

 
Fig. 3. Correlation of β  with ( )1/32

pu cλ  using data from six 

disparate sites. 
 
The broad range of scales represented in Fig. 3, the 
relatively high 2r  and the lack of obvious systematic 

deviation by any of the data suggest that ( )1 / 32
pu cλ  is a 

reasonable velocity scale for the equilibrium range.  From 
the parameters of the regression line in Fig. 3, a model for 
β  takes the form 

 

( )1 / 32 1 / 21
02 pu c u gλβ α − = −  

,                        (6) 

 
with 0.00553α =  and 0 1.92u = m/s.  This model is useful 
in some aspects of data interpretation. 
 
The existence of the offset velocity 0u  in (6) is a 
consequence of our regression and is, at this point, a 
curiosity.  Under simpler scaling arguments, one might 
expect 0u  to have a value near zero, which would imply that 
our non-zero value owes to some form of error.  However, 

common sources of error do not appear capable of reducing 

0u  to zero.  If surface drift is considered and that drift is 
roughly 1 to 3 times *u , then *u  would have to be between 
0.6 m/s and 1.9 m/s, which is not the case for these data.  If 
Doppler effects owing to following currents are important, 
our estimates of β  would tend to be too high, and 
correcting β  would tend to increase 0u , not reduce it.  If 

atmospheric stability is relevant, our estimates of *u  would 
have to be high by a factor of up to about 2 for the small 
scale data.  Such a situation would require stable 
stratification for all data, which does not seem likely. 
 
At face value, (6) indicates that the scale for the equilibrium 
range goes to zero at a finite wind speed.  In combination 
with (1), this suggests there is no energy at conventional 
equilibrium-range frequencies, an unlikely situation.  
However, the small- β  situation may be legitimate in the 
sense of numerical work by Resio, et al. (2001), where those 
authors show that, owing to nlS  alone, the net flux of energy 
from the spectral peak region to higher frequencies is 
essentially proportional to 3β .  Where β  approaches zero, 
the net non-linear flux to higher frequencies may likewise 
go to zero, or even reverse.  In the absence or reversal of this 
flux, an equilibrium range may not exist.  There would still 
be energy at the conventional equilibrium-range frequencies, 
but it would arise from a combination of source terms that 
would lead to a form of scaling different from (but at some 
level asymptotic to) Eq. (6).  As suggested by Fig. 3, this 
behavior would occur for waves at scales smaller than the 
smallest waves considered here, i.e., probably during the 
very initial stages of wave growth.  However, the resulting 
offset velocity 0u  appears to apply to waves of all scales, 
and so may be an important general consideration in wave 
modeling. 
 
3.     EXPERIMENT DESCRIPTION 
 
Our experiment was somewhat ad hoc when judged from a 
broad view.  Our immediate needs, which we achieved, were 
to obtain simple wind and wave data at a site comparable to 
Lake George.  However, logistical constraints prevented 
direct measurements of wind stress, atmospheric stability, 
local mean currents and a complete bathymetric survey of 
the experiment site.  Thus, the experiment was somewhat 
incomplete, and there may be reasonable concerns about 
interpretation of results.  On the other hand, where it was 
necessary to deploy at least one wave gauge with which to 
estimate ( )F k , it was relatively straightforward to deploy 

an array of gauges so as to obtain estimates of ( ),F k θ .  
With some care in interpretation, these observations may 
provide considerable insight into directional wave behavior. 
 
3.1     Site 
 
The experiment site was Currituck Sound, North Carolina 
(Fig. 1), chosen for its very practical adjacency to our FRF 
home base and because waves evolving there are at scales 
much like those in Lake George.  Currituck Sound is a body 



of water elongated in the north-south direction, residing 
between the northern North Carolina Outer Banks and the 
mainland to the west.  The nearest ocean inlet is about 40 
km to the south, and except for an opening to the larger, 
deeper Albemarle Sound at its southern end, Currituck 
Sound is nearly landlocked.  The dot marked “sled” in Fig. 1 
indicates where we made our measurements.  From that 
point, the shortest fetch to solid land is about 0.9 km to the 
east.  In the westerly direction, the shortest fetch is about 5.5 
km.  To the northwest, the maximum fetch is about 14 km.  
A similar maximum fetch exists to the southwest, except for 
the roughly 25-degree arc of directions leading to Albemarle 
Sound, where the fetch is much greater. 
 
Actual effective fetches in some directions are likely to be 
smaller than the maximum fetches just described.  We were 
able to survey a small rectangular region, about 0.5 km by 3 
km with the long axis oriented east-west, in the vicinity of 
the sled site.  This survey showed a depth at the sled site of 
2.2 m relative to the 1929 National Geodetic Vertical Datum 
with variations from 1.8 m to 2.4 m over most of the 
surveyed area, but with a steep bank about 0.5 km to the east 
of the sled and depths of about 0.6 m to the east of that 
point.  We found that our survey did not agree in detail with 
the NOAA chart on which we had relied for basin 
bathymetry.  That finding cast doubt on other details of the 
NOAA chart, and, unfortunately, we were not able to do 
more extensive surveying.  The NOAA chart and local 
fishing lore indicate a channel several km wide with depths 
of 1.8 m to 2.1 m extending along the long axis of Currituck 
Sound in the vicinity of the FRF, and we assumed this was 
the case.  The same sources suggest many shoal areas within 
a few km to the north and south of our site, but we do not 
know details of their sizes and locations.  These features 
would likely limit the effective fetch for waves at our site. 
 
This situation is not critical for our basic purpose.  We can 
reasonably assume that for winds generally from the west, 
there is sufficient fetch over water of sufficient depth that 
we can relate local wind scales to local wave spectra with 
some confidence.  What we cannot do is test any fetch-
growth hypotheses. 
 
3.2     Sensor Platform 
 
The instrumentation in our experiment essentially consisted 
of a directional wave gauge and an anemometer mounted on 
a sled.  Fig. 4 shows some of the basic parts of the sensor 
platform in its deployed position.  A three-legged pipe-
frame tower with a working stage near its top held a solar 
panel and battery box to provide electrical power, a 
weatherproof box housing a multiplexer and radio 
transmitter that sent data to the FRF main building via an 
antenna (on the short mast above the handrail), a lightning 
rod (on the tall mast), and an anemometer (R. M. Young 
model 09101 digital wind speed and direction) on the third 
mast. 
 
The directional wave gauge consisted of an array of nine 
capacitance-type wave rods of 0.6-mm diameter and 3-m 
length (Ocean Sensor Systems, Coral Springs, Florida) with  
 

 
 

Fig. 4. Instrument platform used in Currituck Sound. 
 
internal digitization of water levels into 4,096 steps along 
the sensor length.  A gauge cage (seen on the far side of the 
pipe tower in Fig. 4), consisting of two horizontal 
cruciform frames separated in the vertical by pipes at the 
frame ends, held the array of wave rods.  The wave rods 
were not rigid and, if not constrained, would tend to flex 
under wave action.  This behavior would compromise the 
necessary fixed relative spacing of the wave rods, so a set of 
horizontal stays (made of fishing line) tied the wave rods in 
their requisite geometric pattern to the vertical pipes of the 
gauge cage. 
 
Fig. 5 shows the geometry of the directional array.  It has the 
form of two orthogonal linear arrays with one shared gauge.  
The two-dimensional character of this array allows full 360-
degree directional resolution, and avoids the 180-degree 
ambiguity that plagues one-dimensional arrays.  The design 
of each linear-array arm follows the guidance given by 
Davis and Regier (1977).  Minimum gauge spacing is 0.1 m, 
which means that the shortest resolvable wave must have a 
length in excess of 0.2 m, or, in deep water, a frequency less 
than about 2.8 Hz.  Maximum gauge spacing (along one 
arm, a degenerate case for wave crests parallel to that arm) 
is 1.6 m.  Reasonably detailed directional resolution is 
possible for waves several times this length because 
directional estimates are based on cross-spectral phase 
differences between pairs of gauges and the array needs only  



 
Fig. 5. Dimensions and pattern of the Currituck Sound directional 

wave array. 
 
sample a large enough fraction of a wave length to detect a 
phase difference.  Beyond about ten times maximum 
spacing (a wave length of about 16 m or a deep-water 
frequency of about 0.3 Hz), resolution degrades to that of a 
low-resolution directional gauge, capable of estimating only 
a few of the low moments of a directional distribution 
function.  However, the range of frequencies from 0.3 Hz to 
2.8 Hz includes the frequencies of interest in this study, so 
the array geometry is adequate for our purposes. 
 
Prior to deployment, each of the wave rods was statically 
calibrated along its sensing length to establish a gain and 
offset for interpretation of its digital output.  With the 
exception of a few tens of cm at the tops and bottoms of the 
wave rods, the response was very linear.  For the central 2 m 
of the working length, all of the calibrations had a 
correlation coefficient 2r >  0.99993. 
 
3.3     Sampling Pattern and Data Analysis 
 
The sled was deployed at the location shown in Fig. 1 from 
24 October 2001 to 19 April 2002.  A data collection began 
at the top of every hour and lasted for about 41 minutes.  
The wave gauges were sampled synchronously at time steps 
of 0.2048 s (about 4.88 Hz) so that each gauge had a record 
of 12,288 readings.  The 2.44-Hz Nyquist frequency was 
thus compatible with the geometry of the directional array.  
Fourier analysis with segment and band averaging yielded 
auto- and cross-spectra at frequency increments of about 
0.024 Hz, each having 120 degrees of freedom.  Auto-
spectra from the nine sensors were averaged to produce an 
estimate of the total variance at each frequency ( )TE f .  

These variances were filtered based on directional 
considerations described in Section 3.6 to provide final 
estimates of the one-dimensional spectra ( )E f .  The 
transformation 
 

( ) ( )
2

gc
F k E f

π
=                                    (7) 

 
provided estimates of one-dimensional wave number 
spectra. 
 

The iterative maximum likelihood estimator (IMLE) of 
Pawka (1983) (adapted to a two-dimensional array) 
provided direct estimates of directional distribution 
functions ( ),D f θ , which, in combination with ( )TE f , 

yield estimates of frequency-direction spectra ( ),E f θ  by 
the conventional expression 

 
( ) ( ) ( ), ,TE f E f D fθ θ= .                        (8) 

 
Estimates of wave number-direction spectra are then 

 

( ) ( ), ,
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=                            (9) 

 
by virtue of (7) and linear dispersion.  Note that here we use 
rectangular rather than polar coordinates to express the 
directional distribution function so that  
 

( )
360

0
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The IMLE scheme assumes that the amplitude of a wave at a 
particular frequency and from a particular direction can be 
modeled as a linear combination of the Fourier components 
at that frequency from the sensors in a spatial array of 
gauges.  The method is entirely consistent with linear wave 
theory, and where that theory is valid, the IMLE is valid.  
Extensive numerical testing of a six-element array on 
Harvest Platform near Point Conception, California, by 
Long (1995) and of a fifteen-element array at the FRF 
(unpublished) indicate that the method is quite accurate in 
recovering a specified directional distribution from its 
associated Fourier representation, even in the presence of 
moderate noise.  However, the method is just an estimator, 
based on sparse sampling, and there is no ground truth, so 
results must be interpreted as an indication of, rather than 
absolute, truth. 
 
We did not use all gauges shown in Fig. 5 in directional 
estimation at all frequencies.  For example, we did not use 
the outermost gauges of the array for high-frequency 
calculations because natural waves tend to become 
uncorrelated at scales of about three wavelengths.  Cross-
spectra across the outer span of the array would then be very 
noisy and thus compromise directional estimates.  We did 
not use closely spaced gauges for low-frequency 
calculations because such gauge pairs do not resolve well 
the phase differences of long waves.  For all but the very 
lowest frequencies, we used at least five gauges.  A simple 
rule of thumb is that a circle divided by the number of 
independent measured cross-spectral elements gives an arc 
at which two directional peaks can be resolved.  With five 
gauges, that arc is about 18 degrees.  To resolve such 
potential peaks, we set our algorithm to make estimates at 2-
degree increments. 
 
We deployed the wind sensor as it came from the 
manufacturer, without independent calibration (beyond a 
few coarse field tests).  Anemometer sp eed and direction 



had 1-Hz sampling, and these data were vector averaged for 
the duration of a collection to characterize local winds. 
 
3.4     Initial Quality Control 
 
Though we collected several thousand spectra during the 
sled deployment, there were two characteristics of our 
system that decimated considerably the number of useful 
results (beyond an occasional dead battery and infrequent 
fouling of the array by drifting plants).  One was the discrete 
sampling step of our wave rods.  The other was an effect of 
the horizontal stays employed to stabilize the array. 
 
The least-significant-bit chatter of the wave rod output 
digitizers established a computable (white) noise floor that 
was significant relative to spectral densities at high 
frequencies in our low-energy observations.  In the paper by 
Resio, et al. (2004), which examined spectral levels at 
equilibrium-range frequencies, we eliminated all collections 
with 10u <  5 m/s and pf >  0.7 Hz to avoid the noise floor 
problem in an indirect way.  In the present paper, we are 
interested in high-frequency information, so, in addition to 
the previous constraints, we eliminate the parts of any 
spectrum having ( )E f  less than ten times the noise floor.  
This has the effect of truncating the high-frequency parts of 
low-energy spectra, but helps avoid a known source of 
noise. 
 
The horizontal stays performed their design function very 
well, and gave no problem as long as they were either 
completely submerged or completely sub-aerial.  However, 
when they intersected the water surface, they gave rise to 
impedance paths with which the wave rod circuitry could 
not deal, and wave signals were seriously distorted.  
Because this condition was more prevalent in high waves, 
we lost some very interesting high-energy observations.  
Fortunately, the effect was very obvious in processed 
results, so we were easily able to avoid compromised data. 
 
3.5     Example Spectrum 
 
Fig. 6 illustrates one example of the set of ( ),E f θ  arising 

from the Currituck Sound measurement campaign.  It has 
several interesting features, including a single sharp peak, a 
suggestion of a directionally bimodal high-frequency tail, 
and no clear evidence of waves from extraneous sources 
(i.e., swell).  We will examine details of this and other 
spectra in Sections 4 and 5, but Fig. 6 with Fig. 1 helps 
define the coordinate system used here.  Our x -axis begins 
at the sled and is directed toward magnetic east, being 
roughly normal to the long axis of Currituck Sound.  The 
y -axis is directed toward magnetic north.  Directions are 

defined in the geometric (rather than a geophysical) sense, 
and increase counter-clockwise from the x -axis.  Thus, +90 
deg represents magnetic north, -90 deg is magnetic south, 
and ± 180 deg is magnetic west.  Both winds and waves are 
given in the ‘from’ sense, so that the wind and waves 
illustrated in Fig. 6 are from the southwest. 
 
 

 
Fig. 6. An example frequency-direction spectrum from Currituck 

Sound. 
 
3.6     Additional Constraints 
 
There were 1614 observation cases remaining after the 
initial screening described in Section 3.4.  To help ensure  
that wind and wave scales are compatible, we decimate the 
data set further based on the following considerations. 
 
As noted in Section 3.1, we do not know enough about 
effective fetches in Currituck Sound to test fetch-growth 
hypotheses, but we can do an inverse analysis by using a 
fetch-growth model to see if the evident origins of our data 
are compatible with extant basin boundaries.  The model we 
use is an adaptation of an expression derived by Resio and 
Perrie (1989), taking the form 

 
2
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=  
 

,                        (11) 

 
where moH  is variance-based characteristic wave height.  
Fig. 7 shows as symbols estimated fetch as a function of 
wind direction wθ  for our 1614 observations.  The solid line 
in Fig. 7 is an estimate of absolute limiting fetch based on 
distance from the sled position to solid land along various 
possible wind azimuths.  For winds generally from the 
north, west and south, waves evidently originate within the 
body of the sound, suggesting fetch- or duration-limited 
growth.  Some offset from an upwind boundary is sensible 
for fetch-limited growth if one considers that it takes a 
distance of order 100 times the height of an upwind 
roughness element for a new internal boundary layer to 
form.  Given the trees, dunes and houses with heights of 
order 10 m that line the boundaries of the sound, it may take 
about 1 km of open water for significant wave growth to 
begin.  If significant shoals or transient winds exist, then 
evident fetches may be considerably closer than upwind 
solid land.  One does not expect the fetch to exceed the 
limiting fetch, however.  Many of the points from the 
northeast in Fig. 7 do exceed this limit, suggesting an  



 
Fig. 7. Apparent (symbols) and limiting (solid line) fetches as 

functions of upwind azimuth for sled observations in Currituck 
Sound. 

 
imbalance (in the similarity sense) between wind and waves 
over these short fetches and oblique wind directions. 
 
This suggestion is supported by Fig. 8, which illustrates 
estimates of the coefficient α  in (2) as a function of wind 
direction.  Here we use our data to estimate β  based on (4) 
(with frequency limits 1 1.5 pf f=  and 2 3 pf f= ) and 
velocity scales given by (6), so that 
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1 / 32
0

2

p

g

u c uλ
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−
 ,                             (12) 

 
with uλ  given by (5).  Though there is some scatter of α  
estimates in Fig. 8, there is a distinct tendency toward lower 
values at directions associated with short fetches and oblique 
winds.  While we can examine these cases in more detail at 
a later time, we retain for the present study only those cases 
for which the fetch to solid land was at least 5 km, which 
should allow enough space for (steady) wind and waves to 
reach some kind of dynamic balance.  A conservative 
expression of this constraint is wθ > 110 deg.  The vertical 

lines in Fig. 8 indicate the arc excluded by this constraint.  
With this constraint, there remain 649 observations for use 
in the present study.  The bold horizontal line in Fig. 8 
represents the mean α  from these remaining observations.  
The dashed horizontal lines show one standard deviation on 
either side of this mean.  The horizontal dotted line is the α  
deduced from six disparate data sets based on the regression 
shown in Fig. 3, which shows consistency between the 
Currituck Sound data and the more general data set 
(although the latter includes the former, so the two are not 
independent and some agreement is not surprising). 
 

 
Fig. 8. Estimates of coefficient α  in terms of upwind azimuth. 

 
A final constraint on the data arises from evidence (shown in 
Section 5) of high-frequency waves propagating upwind, a 
condition we would not expect in open water.  We ascribed 
these signals to wave reflections from submerged parts of 
the sled structure, which, owing to our directional constraint 
were generally downwind of the directional array.  An 
advantage of directional measurements is that one can 
isolate downwind propagating waves.  We did this by 
summing the downwind energy in each ( ),E f θ  to form an 

estimate of the relevant one-dimensional frequency spectra 
used in our subsequent analysis.  The filter algorithm is 

 

( ) ( ) ( ) ( )
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where wθ  is wind direction. 
 
4.     ONE-DIMENSIONAL SPECTRA 
 
The 649 cases remaining after our various filters have 
ranges of bulk parameters listed in Table 1.  Because our 
goal was to measure waves similar in scale to those in Lake 
George, Table 1 also shows ranges of parameters 
represented by data we used from that site.  There is broad 
agreement between the two environments.  There are higher 
peak frequencies in the Lake George set, and such 
conditions exist in Currituck Sound, but we lost our samples 
of such cases owing to the noise floor constraints described 
in Section 3.  The main difference between the two sites is 
water depth.  The shallower water of Lake George suggests 
that depth-related effects may be more prevalent in data 
from that site.  Except for depth differences, the two sites 
have similar scales. 
 
 
 



Table 1.  Parameter Ranges Associated with Currituck Sound and 
Lake George Data. 

 Currituck Sound Lake George 
cases 649 77 

10u  (m/s)  5.0 – 15.7 5.1 – 19.8 

moH  (m) 0.09 – 0.59 0.05 – 0.44 

pf  (Hz) 0.35 – 0.63 0.32 – 1.07 

pk  (rad/m) 0.44 – 1.62 0.67 – 4.68 

h  (m) 2.28 – 2.93 0.60 – 1.15 

pk h  1.17 – 3.99 0.70 – 3.12 

mo pH k  0.11 – 0.35 0.14 – 0.41 

moH h  0.04 – 0.22 0.09 – 0.39 

10 pu c  1.46 – 4.09 2.13 – 6.65 

 
 
4.1     Mean Normalized Spectra 
 
To characterize the general character of the Currituck Sound 
observations, we normalize the one-dimensional wave-
number spectra with equilibrium range scales and average 
the results from all 649 samples.  From (1), spectra in the 
equilibrium range should behave as 5 / 2kβ − , so that 
normalizing wave-number spectra as ( )5 / 2k F k β  will yield 

unit value in any existing equilibrium range of k  or its 
corresponding range of f .  We further cast discrete  
normalized spectral elements into bins of pf f  to examine 
spectral structure relative to its peak.  Fig. 9 shows the 
means (symbols) and standard deviations (error bars) of the 
resulting bin contents. 
 

 
 
Fig. 9. Means (symbols) and standard deviations (error bars) of 649 

equilibrium-range-normalized wave-number spectra in spectral-
peak-relative frequency bins. 

 
 

Fig. 9 has several interesting features.  Spectral densities in 
the vicinity of the spectral peak have large standard 
deviations, suggesting variations in peak enhancement 
among members of this data set.  The enhanced peak region 
terminates near 1.5 pf , at which point the mean spectrum 

flattens, being roughly constant up to about 2.1 pf .  Beyond 

2.1 pf , the mean spectrum systematically falls below the 

constant line representing 5 / 2k−  behavior, and, indeed, 
appears quite consistent with a 3k−  behavior (the dashed 
line in Fig. 9) as it would appear in this normalization if the 
change in slope occurred at 2.1 pf . 
 
The break in slope near 2.1 pf  is intriguing because some 
authors, notably Forristall (1981), report a break in slope 
from 4f −  (equivalent to 5 / 2k− ) to 5f −  (or 3k− ) behavior in 
observed spectra, and others, e.g., Mitsuyasu, et al. (1980) 
and Donelan, et al. (1985), do not.  Forristall (1981), in a 
study of hurricane waves in the Gulf of Mexico, cast his 
observations in terms of normalized frequency ° *f u f g= , 

and found a break in slope near °f =  0.0275.  When we cast 

the Currituck Sound observations in terms of °f , we find a 

break in slope near °f =  0.0200, which suggests a  
dissimilarity of the two data sets in this form of scaling, 
possibly owing to differences between the very young 
Currituck Sound waves and the more fully evolved waves 
examined by Forristall (1981).  To follow this thought, we  
cast data from NDBC buoys 41001 and 46034 (used in Fig. 
2 and chosen for steadiness in wind speed and direction as 
well as narrowness of spectral peaks to reduce the 
probability of coexisting swell) in the compensated form 
used in Fig. 9.  The result is shown in Fig. 10, where, 
amid greater data scatter than in Fig. 9, there appears to be a 
deviation from 5 / 2k−  behavior for 2.9 pf f> .  The dashed 

line in Fig. 10 indicates a 3k−  behavior intersecting the 
equilibrium-range curve at 2.9 pf .  One difference between 
Fig. 9 and Fig. 10 is that (in the mean) the spectral peak 
exceeds the equilibrium range curve by a greater amount for 
the Currituck Sound data than for the NDBC data.  Another 
difference is that the transition frequency between the two 
power-law behaviors is lower for the Currituck Sound data 
than for the NDBC data.  This suggests that the bandwidth 
of the equilibrium range may depend on the stage of wave 
development, a condition that can be characterized by wave 
age. 
 
To see if such a pattern exists within the suite of Currituck 
Sound and NDBC observations, we stratified those spectra 
in classes of inverse wave age / pu cλ , which arises from the 

success (discussed in Section 2) of ( )1 / 32
pu cλ  as an 

equilibrium-range velocity scale and the consequent 

corresponding inverse age ( )1 / 32
p pu c cλ =  ( )2 / 3

pu cλ  that  

 



Fig. 10. Means (symbols) and standard deviations (error bars) of 
356 sample spectra from NDBC buoys 41001 and 46034 

normalized by equilibrium-range scales. 
  
can be represented simply by / pu cλ .  We used eight 
stratification bins for the NDBC data and seven for the 
Currituck Sound data, with bin boundaries selected to 
contain representative numbers of samples and to be 
common for both data sets where the sets had similar inverse 
wave ages. 
 
Fig. 11 shows the averaged spectra within our stratification 
classes, with classes representing ‘old’ waves at the bottom 
of the figure all being from the NDBC data and classes 
representing ‘young’ waves at the top of the figure all being 
from the Currituck Sound data.  There are three classes from 
each set with common ranges of wave age.  The broad 
pattern indicated by Fig. 11 is that the class-averaged spectra 
deviate from the horizontal equilibrium-range line at much 
higher pf f  for old waves than for young waves.  The 

indication is that there is a break in slope at pf f >  3 for 

the oldest waves, but the break occurs at pf f ≅  2 for the 
youngest waves. 
 
  Close examination of Fig. 11 indicates that the structures of 
compensated spectra in overlapping classes from the two 
sets are not identical, especially in the region of the spectral 
peak.  This condition may arise owing to our use of the 
Charnock relation alone to estimate *u  from measured wind 
speed, when it is well known that atmospheric stratification 
can modify drag coefficients for low to moderate wind 
speeds.  As defined by (5), uλ  is a strong function of *u , so 
we may have misestimated somewhat the wave ages of 
some of our spectra and thus affected the structure of our  
class averages.  Such errors would not shift class members 
by more than one or two classifications, however, so the 
broad pattern indicated by Fig. 11 is unchanged. 

 
Fig. 11. Currituck Sound mean spectra in classes of equilibrium-

range inverse wave age. 
  
The solid dots in Fig. 11 are data (extracted by hand) 
representing three age classes from Fig. 12 of the well-
known paper by Donelan, et al. (1985), who classed their 
results with an age given by 10 pu c .  Those class averages 
are imposed on our classed data not by inverse age, but by 
the general extent to which the spectral peaks exceed the 
equilibrium-range curve (the close alignment of spectral 
peak values between the two sources is fortuitous), and so 
may be only approximately correctly placed.  The point of 
this exercise is to show that their results for young field data 
extend to an / pf f  that is too low to detect a break in slope.  
Thus, our results do not conflict with theirs.  Note that the 
three age classes of data from Donelan, et al. (1985) not 
used here include one case of older field data, which is 
consistent with our assumed pattern, and two cases of 
laboratory data, which do not agree with our pattern, but 
which may not be representative of open-water data. 
 
We performed a (very) qualitative test of the suggested 
pattern by assuming that the class-averaged compensated 
spectra in Fig. 11 consist of an equilibrium range with 
µ µ( ) ( )5 / 2 1pF f f f k F k β= = =  for µ µ1.5 mf f< ≤  and a 

3k−  range for which µ µ( ) µ µ 1

mF f f f
−

=  for µ µ
mf f≥  with the 

transition frequency µ mf  a function of pu cλ .  We isolated a 

probable µ
mf  by allowing it to vary until we found a 



minimum in the sum square error of the two models, as 
defined by 
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where µ
2f  is the highest frequency within a class. 

 

Fig. 12 shows the resulting µ
m pmf f f=  as a function of 

pu cλ  for the fifteen classes shown in Fig 11.  The result is 
certainly not conclusive, but is suggestive of a pattern 
wherein the break in slope shifts to a higher multiple of the 
spectral peak frequency as wave age increases.  The general 
trend of these results suggests that the pattern is worthy of 
further study, especially using a broader suite of data with 
very well resolved high frequency spectral tails.  The 
indicated trend may account qualitatively for findings by 
various investigators of the existence or location of a break 
in slope, given its possible age- and pf -dependence, in 
conjunction with details of spectral sampling.  For example, 
Mitsuyasu, et al. (1980) show two specific examples of 
spectra with no break in slope up to pf f = 3.  Estimates 

(from their tables and figures) of pu cλ  are less than 0.5 in 
both cases, which makes their observations consistent with 
our Fig. 12. 

 
Fig. 12. Slope transition frequency as a function of inverse wave 

age. 
 
A possible cause of this behavior is that, as mentioned in 
Section 2, the net non-linear flux through the equilibrium 
range tends to vary as 3β .  For very young (small- β )  
waves, the equilibrium range may be less well developed 
than for older waves.  Investigation of this process requires 
integration of the wave evolution equation with all source 
terms active, i.e., there is an integral time scale associated 
with the non-linear energy flux that we only loosely 

characterize with inverse wave age.  Numerical work, in 
conjunction with some better field data, will help determine 
if our conjecture has verity. 
 
4.2     Consideration of Lake George Data 
 
Our original intent was to replicate in part the Lake George 
observations, so it is of interest to examine those data in the 
same normalization as is used in Fig. 9.  Fig. 13 shows the 
Lake George data used by Resio, et al. (2004), where, like 
the Currituck Sound data, we used only those cases 
satisfying 10u >  5 m/s and for which the winds came from 
the long axis or far side of the lake. 
 
The data shown in Fig. 13 are different in detail from the 
data shown in Fig. 9.  The range of observed frequencies is 
higher for Lake George, extending here to more than 15 pf .  
In the conventional equilibrium range of frequencies from 
1.5 pf  to 3 pf , there is no region of constant compensated 

energy density, but rather a peak in the vicinity of 2 pf .  
Because these waves have propagated from mid-lake water 
depths of about 2 m to local depths of 0.6 m to 1.1 m, a 
Fourier energy peak at 2 pf  is likely a signature of shoaling 
waves. 

 
Fig. 13. Means (symbols) and standard deviations (error bars) of 77 

normalized wave-number spectra from Lake George. 
 
Interestingly in Fig. 13, there is a range of approximately 
constant compensated energy density for frequencies from 
about 4 pf  to about 9 pf , well beyond the conventional 
equilibrium range of frequencies.  The compensated values 
in this range do not equal one because we used data for all  

2.5 pf f≥  in estimating β .  Some points have elevated 

values relative to the apparent equilibrium range, so β  is 
slightly over-estimated.  Normalization by this over-
estimated β  results in compensated spectra slightly less 
than unity.  The breadth in frequency of the apparent 



equilibrium range seems curiously large, but this may be a 
consequence of shallow depth.  Resio, et al. (2001) note that 
non-linear interaction rates are expected to increase 
significantly (relative to deep water) for pk h  less than about 
1.2.  For the Lake George data used here, the expected 

pk h =  1.21 ±  0.57, whereas for Currituck Sound, pk h =  
2.48 ±  0.43.  Thus, non-linear interactions are likely to be 
stronger in the Lake George environment than in Currituck 
Sound.  That a more dominant nlS  results in a broader 
equilibrium range is consistent with our observations 
associated with Fig. 12, but it is not obvious why spectral 
levels would continue to follow the equilibrium scale given 
by (6), especially in the possible presence of shoaling effects 
in addition to the effects of inS  and dsS . 
 
Another difference between the two data sets is there is no 
spectral decay evident in the Lake George data at 
frequencies higher than the apparent equilibrium range.  In 
fact, the spectra increase relative to a 5 / 2k−  behavior.  It is 
not clear why this behavior exists.  These data differ in 
detail from our Currituck Sound observations, so numerical 
and replicate field studies may be required to account for 
their behavior. 
 
5.     DIRECTIONAL DISTRIBUTION FUNCTIONS 
 
To characterize the directional nature of the whole set of 649 
frequency-direction spectra used in this study, we rotated 
each directional distribution function ( ),D k θ  so that its 

zero direction aligned with the wind direction ( ), wD k θ θ− , 

and the wave number coordinate was expressed in discrete 
bins relative to pk , thus obtaining a set of ( ),p wD k k θ θ− .  

For each discrete ( ),p wk k θ θ−  bin, we then have a number 

of samples from which we can construct mean 

( ),p wD k k θ θ−  and standard deviation ( ),D p wk kσ θ θ−  

normalized directional distribution functions representative 
of our data.  Note that we eliminated from the average any 
part of any spectrum that violated our noise floor constraint, 
so the high-wave-number parts of our statistical distributions 
are based on fewer samples than those near the spectral 
peaks.  Figs. 14 and 15 illustrate D  and Dσ , respectively.  

Fig. 16 is a contour plot of D . 
 
The mean directional distribution function found here has 
some of the well-known features deduced or observed by 
other researchers, including a narrow, single-mode 
distribution near the spectral peak, and a broad, clearly 
bimodal distribution at higher frequencies.  These results are 
qualitatively similar to observations in Lake George 
reported by Young, et al. (1995), except that the present 
results seem better resolved, owing probably to the use of a 
nine-element array (instead of seven), the IMLE algorithm 
(instead of MLE) and the use here of a great number of 
 

 
Fig. 14. Mean normalized directional distribution function from 649 

Currituck Sound observations. 
 
observations in the average.  In a reasonable analysis, 
Young, et al. (1995) deduce from numerical studies that the  
bimodal structure owes to the influence of nlS .  It is 
interesting that in the present data there is clear evidence of 
bimodal structure at pk k =  16 (or pf f =  4), and some  
evidence (see Fig. 16) that the bimodality extends to the 
highest wave numbers for which we could perform statistics, 
 
 

 
Fig. 15. Standard deviation of the set of directional distribution 

functions observed in Currituck Sound. 
 



though the downwind part of the directional distribution is 
much whiter at the highest wave numbers.  In contrast, the 
part of the mean one-dimensional spectrum (Fig. 9) that we 
call the equilibrium range (where, supposedly, the sum 
effect of sources scales with nlS ) extends only to pf f ≅  

2.3 or pk k ≅  5.9.  If nlS  continues to be influential at 
much higher frequencies, the transition between dominance 
 

 
Fig. 16. Contours of mean directional distribution function shown in 

Fig. 14. 
 
of the various source terms must be quite subtle.  The 
whitening of the downwind directional distribution in Fig. 
14, which may be a signature of dsS , appears to begin near 

pk k =  12.  It should be quite enlightening to investigate 
numerically (an obvious next step) what kinds of source 
terms are necessary to replicate this behavior. 
 
The evident broadening of the directional distribution at 
wave numbers below the spectral peak in Fig. 14 is artificial.  
Within the discrete pk k  bins used in that figure, the low-
wave-number bins include estimates for waves that are 
longer than the array can resolve, so the results are not good. 
 
In directions satisfying wθ θ− >  90 deg in Fig. 14, there is 
evidence of high-frequency waves traveling upwind, a 
condition we did not expect in open water.  We assumed that 
this signal owed to short waves reflecting from the tower 
and gauge cage of our instrumented sled.  Because such 
waves would not be part of a natural wind sea, and would 
contaminate our estimates of the one-dimensional spectra, 
we based the spectra used in Section 4 on the downwind 
parts of the frequency-direction spectra in accordance with 
(13). 
 
That the mean directional distribution is representative of its 
constituent members is suggested by the standard deviation 

of the set shown in Fig. 15.  Dσ  is generally less than D  
over the whole domain, and especially in the downwind 
directions at wave numbers just above the spectral peak.  
Larger Dσ  occur in the vicinity of the spectral peak and the 
immediate bimodal tails, and lie beneath these features.  
This suggests that there may be subtle variations in the 
structures of constituent directional distributions, but that the 
pattern shown in Fig. 14 is fairly representative. 
 
To examine variations in structure of the directional 
distribution functions, we stratified the 649 observations into 
the same seven equilibrium-range inverse age classes used 
in Fig. 11 for the one-dimensional spectra, and averaged the 
members of each class using the same method described 
above for D .  Space precludes showing results for all 
classes, but we show two classes in Fig. 17, one for ‘old’ 
waves 1.2 pu cλ< <  1.3 (an average of 42 cases) and one 

for ‘new’ waves 1.9 pu cλ< <  2.3 (based on 77 cases).   
The two distributions in Fig. 17 have narrow single-mode 
peaks and bifurcated high-frequency tails in general 
similarity with the overall mean of Fig. 14 (they are plotted 
on the same scale as Fig. 14, but are truncated owing to our 
noise-floor constraint).  The main difference between the 
two distributions is that the bifurcation peaks of the younger 
directional distribution span a broader range of direction 
than those of the older distribution.  This characteristic may 
be important.  Our observations are limited to a small range 
of inverse ages and are related only to small waves within 
much wider continua of both wave age and wave height.  If 
bifurcation separation in the spectral tails detectably 
decreases with increasing wave age in our limited 
observations, it is possible that for very old waves, the 
bifurcation disappears, or at least narrows considerably.  At 
the opposite asymptote, extremely young waves may have 
very broad bimodal distributions.  If the non-linear fluxes 
are negligibly small on this asymptote, the system may shift 
to a very different balance of source terms.  
 
Because three-dimensional plots can be illusory, we attempt 
to clarify the apparent age dependence of the bifurcation 
separation by considering directional cross-sections through 
our seven class-averaged distributions at a fixed pk k .  For 
each distribution, we averaged (i.e., smoothed) the 
directional distribution estimates over the five wave-number 
bins spanning 7 pk k≤ ≤  9, with the latter limit simply 
being the highest frequency for which we had averages in 
our oldest age class.  Fig. 18 shows the seven resulting 
distributions.  There, we see a rather smoothly decreasing 
separation of the directional peaks from about 130 deg for 
the youngest class (uppermost curve) to about 110 deg for 
the oldest class (lowermost curve).  The gradation is not  
huge, but neither is our range of ages, so asymptotic 
extremes may be significant. 
 
Related to this, we note that Ewans (1998) in a study of 
fetch-limited waves in 110-m water depth near New Zealand 
was able to distinguish directional modal separation for 
waves of 0.5 m to 4.2 m height and with inverse wave ages 
 



 
Fig. 17. Mean directional distributions in two wave age classes:  
‘old’ waves (upper image) and ‘young’ waves (lower image). 

 

10 pu c  ranging from 0.7 to 1.4.  These waves are older than 

our waves, which have 10 pu c  ranging from 1.5 to 4.1.  In a 

scatter plot of modal separations in terms of pf f  based on 
77 spectra, Ewans (1998) finds a separation range of roughly 
90 deg to 105 deg at pf f =  2.8, or pk k =  8, which is 
near the scale represented in Fig. 18.  Ewans (1998) does not 
note a distinction among the wave ages represented by his 
observations, but his waves are older than ours, and his 
range of modal separations is slightly narrower than the 
range suggested by Fig. 18.  Furthermore, at pf f =  4  
 

 

 
 

Fig. 18. Smoothed directional sections through six class-averaged 
directional distributions near pk k =  8. 

 
( pk k = 16), Ewans (1998), near his highest reported pf f , 
finds separations of about 105 deg to 120 deg, which is  
narrower than the ∼ 130 deg we see in our overall mean  
distribution of Fig. 16.  This suggests that our results may, 
indeed, be part of continuum of distributions that narrow 
with increasing wave age. 
 
The variation in directional behavior also extends into the 
region near the spectral peak, which we identify here as that 
part of the spectrum for which 0.5 pk k≤ ≤  2.5, or, 

approximately 0.7 pf f≤ ≤ 1.6.  Using a smaller increment 

of pk k  than used in Figs. 16 and 17 within which to 
accumulate bin averages, we are able to elucidate some of 
the directional structure near the spectral peak. 
 
Fig. 19 shows the mean directional distribution function that 
results from using all 649 of our observations.  The 
distribution at the spectral peak has a single mode, as 
expected, and the distribution surface clearly begins to split 
into a bimodal form near pk k = 2, or pf f ≅ 1.4.  This 
observation differs from results given by Young, et al.  
(1995).  They indicate that the directional distribution 
function retains a single mode for frequencies up to pf f =  
1.5.  However, not all of our directional distribution 
functions are clearly bimodal at this dimensionless  



 
Fig. 19. Bin -averaged directional distribution function near the 
spectral peak based on all 649 Currituck Sound observations. 

 
frequency.  When we stratify and average our observations 
in the seven equilibrium-range inverse age classes that we  
used for the one-dimensional spectra, we find an age-related 
variation in directional structure. 
 
Fig. 20 shows mean directional distributions for two of these 
classes, one ‘old’ (upper panel) and one ‘young’ (lower 
panel), corresponding to the same classes shown in Fig. 17.  
Fig. 20 indicates that for both age classes, the  
directional distribution has a single mode at the spectral 
peak, but that there is a clear variation in structure at the 
higher frequencies.  For what we call a young sea, there is 
clear bimodality through a range of frequencies that begins 
very near to the spectral peak, with the bifurcation point 
near pk k =  1.4, or pf f =  1.2.  In contrast, the directional 
distribution function for the older sea is less clearly bimodal.  
There appears to be partial bifurcation at some of the higher 
frequencies, but the pattern is far less systematic than that of 
the younger sea.  In this case, one might possibly model the 
directional distribution at pf f =  1.5 as a single-mode 
function, as was done by Young, et al. (1995). 
 
In any case, the structure of the older directional distribution 
function is clearly different from that of the younger case, 
with the latter splitting into two distinct modes at 
frequencies nearer the spectral peak.  This is qualitatively 
consistent with our earlier observation that directional 
distributions tend to narrow with increasing age, and is 
probably related to our speculation that the frequency band 
of the equilibrium range increases with overall wave age. 
 
We note that members of our data set are all samples of 
young waves.  The variations in spectral shape and 
directional structure we observe in our data may owe simply 
to subtle variations in the effects of the various source terms 
in the initial stages of wave growth.  However, the trends we  

 
 
Fig. 20. Mean directional distribution functions in the vicinity of the 

spectral peak for ‘old’ waves (upper image) and ‘young’ waves 
(lower image) from two wave-age classes. 

 
see in our young data are qualitatively consistent with 
results reported by Ewans (1998) for somewhat older ocean 
waves.  This suggests that there is a continuum in the net 
effects of the various source terms in wind waves that gives 
rise to frequency-direction spectra with structures in their 
energy distributions that depend at least on wave age. 
  
5.     SUMMARY 
 
Motivated by what appeared to be curious behavior in the 
scales of Lake George data relative to oceanic data, we 



conducted a field study of directional wind wave behavior in 
Currituck Sound, North Carolina.  In the one-dimensional 
spectra from that site, we see evidence of both an 
equilibrium range following a 5 / 2k−  behavior and, at higher 
frequencies, another range following a 3k−  behavior.  We 
find the bandwidth of the equilibrium range in our data to be 
narrower than the conventional range of 1.5 pf f< <  3, 
but, when compared to data from two NDBC gauges, it 
appears that the equilibrium-range bandwidth is a function 
of and increases with wave age.  The average two-
dimensional directional distribution function, based on 649 
observations, has a narrow, single-mode peak and clear 
directionally bimodal structure at higher frequencies, in 
agreement with observations by Young, et al. (1995).  
Stratification of our directional observations in classes of 
wave age show a subtle change in shape, with broader 
distributions for young seas and narrower distributions for 
older seas, suggesting an age-related variation in directional 
spectral structure, at least for our young waves.  The trend 
indicated by our results is qualitatively consistent with 
observations by Ewans (1998), who finds even narrower 
distributions for his older data. 
 
These variations in directional spectra suggest that the net 
effect of the source terms varies as waves evolve.  Our 
observations indicate the results of those effects, but serve 
only as clues about the nature of the source terms.  The 
subtle variations we see occur at high frequencies where 
there is little energy, and by that measure may not be of 
much import.  However, given that the growth and evolution 
of wave spectra depend on energy fluxes through all 
frequencies, it may be quite important to discern details of 
spectral structure at frequencies well above the spectral 
peak.  It remains to obtain independent observations that 
will verify the patterns we see in our data, and to 
characterize the detailed physics of wind wave source terms 
such that models can replicate this behavior. 
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