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1  Introduction 

Waves of extremely large size, alternatively called freak, rogue or giant 
waves are a well-documented hazard for mariners (see, for instance 
Smith 1976, Dean 1990, Chase 2003). These waves are responsible for 
loss of many ships and many human lives. Freak waves could appear in 
any place of the world ocean (see Earle 1975, Mori 2002, Divinsky et 
al 2004); however, in some regions they are more probable than in 
others. One of the regions where freak waves are especially frequent is 
the Agulhas current of the South-East coast of South Africa (see Gerber 
1996, Gutshabas and Lavrenov 1986, Irvine and Tilley 1988, Lavrenov 
1998, Mallory 1974). Peregrine in 1976 suggested that in areas of 
strong current such as the Agulhas, giant waves could be produced 
when wave action is concentrated by reflection into a caustic region. 
According to this theory, a variable current acts analogously to an optic 
lens to focus wave action. The caustic theory of freak waves was 
supported since this time by works of many authors. Among them 
Smith (1976), Gutshabas (1986), Irvine and Tilley (1988), Sand (1990), 
Gerber (1987, 1993), Pelinovsky (2003). The statistics of caustics with 
application to calculation of the freak wave formation probability was 
studied in the paper of White and Fornberg of 1998. 

On our opinion, a connection between freak wave generation and 
caustics for swell or wind-driven sea is the indisputable fact. However, 
this is not the end of the story. Focusing of ocean waves by an 
inhomogeneous current is a pure linear effect. Meanwhile, no doubts 
that freak waves are essentially nonlinear objects. They are very steep. 
In the last stage of their evolution, the steepness becomes infinite, 
forming a "wall of water". Before this moment, the steepness is higher 
than one for the limiting Stokes wave. Moreover, a typical freak wave 
is a single event (see, for instance Divinsky et al 2003). Before 



breaking it has a crest, three-four (or even more) times higher than the 
crests of neighbor waves. The freak wave is preceded by a deep trough 
or "hole in the sea". A characteristic life time of a freak wave is short - 
ten of wave periods or so. If the wave period is fifteen seconds, this is 
just few minutes. Freak wave appears almost instantly from a relatively 
calm sea. Sure, these peculiar features of freak waves cannot be 
explained by a linear theory. Focusing of ocean waves creates only 
preconditions for formation of freak waves, which is a strongly 
nonlinear effect. 

It is natural to associate appearance of freak waves with the 
modulation instability of Stokes waves. This instability is usually 
called after Benjamin and Feir, however, it was first discovered by 
Lighthill in 1965. The theory of instability was developed 
independently by Benjamin and Feir in 1967 and by Zakharov in 1966. 
Feir in 1967 fist observed the instability experimentally. 

Slowly modulated weakly nonlinear Stokes wave is described by 
nonlinear Shrödinger equation (NLSE), derived by Zakharov in 1968. 
This equation is integrable (see Zakharov, Shabat 1972) and is just the 
first term in the hierarchy of envelope equations describing packets of 
surface gravity waves. The second term in this hierarchy was calculated 
by Dysthe in 1979, the next one was found a few years ago by Trulsen 
and Dysthe (1996). The Dysthe equation was solved numerically by 
Ablovitz and his collaborates (2000, 2001). 

Since the first work of Smith (1976), many authors tried to explain 
the freak wave formation in terms of NLSE and its generalizations, like 
Dysthe equation. A vast scientific literature is devoted to this subject. 
The list presented below is long but incomplete: Ablovitz et al 2000, 
2001; Onorato et al 2001, 2001, 2002; Peregrine 1983; Peregrine et al 
1988; Trulsen and Dysthe 1996; Trulsen et al 1997; Trulsen 2000. 

One cannot deny some advantages achieved by the use of the 
envelope equations. Results of many authors agree in one important 
point: nonlinear development of modulational instability leads to 
concentration of wave energy in a small spatial region. This is a "hint" 
about possible formation of freak wave. On the other hand, it is clear 
that the freak wave phenomenon cannot be explained in terms of 
envelope equations. Indeed, NLSE and its generalizations are derived 

by expansion in series on powers of parameter λ 
1
Lk

, where k is a wave 

number, L is a length of modulation. For real freak wave λ∼ 1 and any 
"slow modulation expansion" fails. However, the analysis in the 



framework of the NLS-type equations gives some valuable information 
about formation of freak waves. 

Modulation instability leads to decomposition of initially 
homogeneous Stokes wave into a system of envelope solitons (more 
accurately speaking - quasi-solitons (Zakharov, Kuznetsov 1998; 
Zakharov et al 2004). This state can be called "solitonic turbulence", 
or, more exactly "quasisolitonic turbulence". In the framework of pure 
NLSE, solitonic turbulence is "integrable". Solitons are stable , they 
scatter on each other elastically. Even in this simplest scenario, spatial 
distribution of wave energy displays essential intermittency. More 
exact Dysthe equation is not integrable. In this model solitons can 
merge, this effect increases spatial intermittency and leads to 
establishing of chaotic intense modulations of energy density. So far 

this model cannot explain formation of freak waves with λ∼ 1. 

This effect can be explained if the envelope solutions of a certain 
critical amplitude are unstable, and can collapse. In the framework of 
1-D focusing NLSE solitons are stable, thus soliton instability and the 
collapse must have a certain threshold in amplitude. Instability of a 
soliton of large amplitude and further collapse could be a proper 
theoretical explanation of the freak wave origin. 

This scenario was observed in numerical experiment on the 
heuristic one-dimensional Maida-McLaughlin Tabak (MMT) model of 
one-dimensional wave turbulence (Zakharov et al 2004). At a proper 
choice of parameters this model mimics gravity waves on the surface of 
deep water. In the experiments described in the cited paper instability 
of a moderate amplitude monochromatic wave leads first to creation of 
a chain of solitons, which merge due to inelastic interaction into one 
soliton of a large amplitude. This soliton sucks energy from neighbor 

waves, becomes unstable and collapse up to λ∼ 1, producing the freak 
wave. We believe that this mechanism of freak wave formation is 
universal. 

The most direct way to prove validity of the outlined above 
scenario for freak wave formation is a straight numerical solution of 
Euler equation, describing potential oscillations of ideal fluid with a 
free surface in a gravitational field. This solution can be made by the 
method published in several articles (Dyachenko et al 1996; Zakharov 
et al 2002; Zakharov 1998). This method is applicable in 1+1 
geometry; it includes conformal mapping of fluid bounded by the 
surface to the lower half-plane together with "optimal" choice of 
variables, which guarantees well-posedness of the equations 
(Dyachenko 2004). Earlier, in the paper (Zakharov, Dyachenko, 



Vasyliev 2002) we studied the nonlinear stage of modulation instability 

for Stokes waves of steepness µ=ka0.3 and µ=0.1. 

In the present article we perform similar experiment for waves of 

steepness µ0.15. This experiment could be considered as a simulation 

of a realistic situation. If a typical steepness of the swell is 0.06÷0.07, 
in caustic area it could easily be two-three times more. In the new 
experiment, we start with the Stokes waver train, perturbed by a long 
wave with twenty time less amplitude. We observe development of 
modulation instability and finally, the explosive formation of the freak 
wave that is pretty similar to waves observed in natural experiments. 

2  Basic equations 

Suppose that incompressible fluid covers the domain  

 

 -∞<y<η(x,t).  (1) 

The flow is potential, hence  

 

 V=∇φ ,∇ V=0,∇ 2φ=0.  (2) 

Let ψ= .φ
y=η

 be the potential at the surface and H=T+U be the total 

energy. The terms  

 

 T=- 
1
2
 ô
ò

-∞
∞  ψφ

n
dx,  (3) 

 

 

 U= 
g

2
 ô
ò

-∞
∞  η2

(x,t)dx,  (4) 

are correspondingly kinetic and potential parts of the energy, g is a 

gravity acceleration and φ
n
 is a normal velocity at the surface. The 

variables ψ and η are canonically conjugated; in these variables Euler 
equation of hydrodynamics reads  

 

 
∂η
∂t

= 
δH

δψ, 
∂ψ
∂t

=- 
δH

δη. (5) 



One can perform the conformal transformation to map the domain 
that is filled with fluid,  

 

 -∞<x<∞,-∞<y<η(x,t),z=x+iy 
 

in z-plane to the lower half-plane  

 

 -∞<u<-∞,-∞<v<0,w=u+iv 
 

in w-plane. Now, the shape of surface η(x,t) is presented by 
parametric equations  

 
 y=y(u,t), x=x(u,t), 
 

where x(u,t) and y(u,t) are related through Hilbert transformation  

 

 y=H! (x(u,t)-u),x(u,t)=u-H! y(u,t). (6) 

Here  

 

 H! (f(u))=P.V. 
1

π ô
ò

-∞
∞   

f(u')du'
u'-u

.  

 

Equations (5) minimize the action,  

 

 S= ôò Ldt,  (7) 

 

 

 L= ôò ψ 
∂η
∂t

dx-H. (8) 

Lagrangian L can be expressed as follows,  

 
 
Error! (9) 

Here f is the Lagrange multiplier which imposes the relation (6). 
Minimization of action in conformal variables leads to implicit 
equations [Error! Reference source not found.]  

 



y
t
x

u
-x

t
y

u
=-H!ψ

u
ψ

t
y

u
-ψ

u
y

t
+gyy

u
+H! (ψ

t
x

u
-ψ

u
x

t
+gyx

u
)=0. (10) 

System (10) can be resolved with respect to the time derivatives. 
Omitting the details, we present only the final result  

 

Z
t
=iUZ

u
,Φ

t
=iUΦ

u
-B+ig(Z-u).  (11) 

Here  

 

 Φ=ψ+iH!ψ 
 

is a complex velocity potential, U is a complex transport velocity:  

 

 U=P!  

ç
æ
å
÷
ö
õ

 
-H!ψ

u

|z
u
|
2  (12) 

and  

 

 B=P!  

ç
æ
å
÷
ö
õ

 
|Φ

u
|
2

|z
u
|
2 =P!  ç

å
÷
õ|Φ

z
|
2

. (13) 

In (12) and (13) P!  is the projector operator generating a function that is 
analytical in a lower half-plane  

 

 P! (f)= 
1
2

 ( )1+iH! f.  

 

In equations (11)  

 
 
Error! 
 

All functions z, Φ, U and B are analytic in the lower half-plane v<0. 

Equations (11) were derived by Dyachenko, Kuznetsov, Spector 
and Zakharov and reported on April, 1994 on the conference on 
Nonlinear Wave Phenomena, Tucson, Arizona. Soon, they were used 
as a base for numerical simulation by Chalikov and Shenin [Error! 



Reference source not found.]. We published these equations in 1996 
[Error! Reference source not found., Error! Reference source not 

found.] and believe that equations (2.10) were not known until 1994; 
so we call them DKSZ-equations. On the contrary, equations (2.11) are 
not new. Recently we found that they were derived by Ovsyannikov in 
1973 [Error! Reference source not found.]. We call them thereafter 
Ovsyannikov’s equations, OE. 

Note, that equation (2.10) can be used to obtain the Lagrangian 
description of surface dynamics. Indeed, from (2.10) one can get  

 

 Ψ=∂-1
H! (y

t
x

u
-x

t
y

u
) (14) 

Plugging (14) into (2.8) one can express Lagrangian L only in terms of 
surface elevation. This result was independently obtained by A. Balk in 
1995 [Error! Reference source not found.]. In 2001, A. Dyachenko 
[Error! Reference source not found.] transformed equations (11) to a 
simple form, which is convenient both for numerical simulation and 
analytical study. By introducing of new variables  

 

 R= 
1

Z
w

,and V=iΦ
z
=i 

Φ
w

Z
w

 (15) 

one can transform system (11) into the following one  

 
R

t
=i(UR

w
-RU

w
),V

t
=i(UV

w
-RB

w
)+g(R-1).  (16) 

Now complex transport velocity U and B  

 

 U = P! (VR̄+V̄R)B = P! (VV̄). (17) 

Thereafter, we will call equations (16), (17) Dyachenko equations, DE. 

Both DKSZ-equations (2.10) and OE (2.11) have the same 
constants of motion  

 

 H=- ô
ò

-∞
∞  ΨH!Ψ

u
du+ 

g

2
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ò

-∞
∞  y

2
x

u
dy,  (18) 

the same total mass of fluid  

 

 M= ô
ò

-∞
∞  yx

u
du,  (19) 



and the same horizontal momentum  

 

 P
x
= ô
ò

-∞
∞  Ψy

u
du. (20) 

The Dyachenko equations (16), (17) have the same integrals. To 
express them in terms of R and V, one has to perform the integration  

 

 z= ô
ò

-∞
u   

du

R
,Φ=-i ô

ò
-∞
u   

V

R
du. (21) 

3  Stokes waves 

The Stokes wave is a stationary solution of dynamic equation 
propagating with a constant velocity c:  

 

 z=z(u-ct)Φ=Φ(u-ct)+λt (1) 

Any form of dynamic equation can be used for construction of this 
solution but we consider DKSZ-equations to be the most convenient 

model for this purpose. In complex variables z,φ these equations read 
as  

 

 z
t
+Φ

u
=p

-
(z̄

t
z
u
-z

t
z̄

u
),  

Φ
t
-igz+Φ

t
z
u
-z

t
Φ

u
-igzz

u
=p

-
(z

t
Φ̄

u
-Φ̄

t
z
u
-igz̄z

u
) (2) 

For stationary Stokes waves we have  

 Φ=cz+λt,Φ
t
=-c

2
z
u
+λ,  

and system (3.2) is reduced to one equation  

 

 λ(1+z
u
)-c

2
z
4
-igz-igzz

u
+igP

-
(z̄z

u
)=0.  (3) 

The constant λ can be found from the condition <z>=0, λ=-ig<p
-
(z̄z

u
)>. 

The brackets mean averaging by real axis (3.3). One can look for a 
solution in the form  

 

 z=i ä
n=1

∞
 a

n
e

-inku
 (4) 



From (3.3) one gets  

 

 λ=-gk ä
m>1

∞
 ma

2
m. (5) 

It is enough to study the case g=1,k=1; in this case a
n
 satisfy equations  

 

 (nc
2
-1)a

n
= 

n

2
 ä
m=1

n-1
 a

m
a

n-m
+ ä

m=1

∞
 (n+m)a

n+m
a

m
-n ä

m=1

∞
 ma

2
m.  (6) 

One can put:  

 a
n
=Aλ

n
, λ

1
=1, A

2
=x,  

where x is a square amplitude of the first harmonic. The first equation 
in (3.6) gives value of phase velocity of the Stokes wave:  

 

 c
2
=1+ ä

m=1

∞
  ê
è

ú
ø(m+1)λ

m+1
λ

m
-mλ2

m x
m

,  (7) 

while other equations make possible to express λ
n
,   n≥2, as  

 

 (nc
2
-1)λ

n
= 

n

2
 ä
m=1

n-1
 λ

m
λ

n-m
+ ä

m=1

∞
 x

m
 ê
è

ú
ø(n+m)λ

n+m
λ

m
-nmλ2

m .  (8) 

In this expression, all λ
n
 are presented by Taylor series on parameter x:  

 

 λ
n
=λ(0)

n +λ(1)
n x+⋅⋅⋅.  (9) 

It is interesting that the leading terms of these series can be found 
explicitly from recurrency condition  

 

 λ(0)
n = 

n

2(n-1)
 ä
m=1

n-1
 λ(0)
m λ(0)

n-m .  (10) 

In particular,  

 



 λ(0)
2 =λ, λ(0)

3 = 
3
2
.  

 

Taking into account the first terms in expansion on power of x, one 
obtains after simple calculations  

 

 λ
2
=1+ 

1
2

x+⋅⋅⋅ 

 c
2
=1+x+ 

7
2
x

2
+⋅⋅⋅. 

Then, for the Stokes wave of a moderate amplitude one gets  

 

y=Acosku+A
2
 çæ
å

÷ö
õ

1+ 
1
2

(Ak)
2

cos2ku+ 
3
2

A
4
cos3ku+⋅⋅⋅  

x=U+Asinku+A
2
 çæ
å

÷ö
õ

1+ 
1
2
(Ak)

2
sin2ku+ 

3
2
A

4
sin3ku  (11) 

c
2
= 

g

k
 çæ
å

÷ö
õ

1+(ka)
2
+ 

7
2
(ka)

4
+⋅⋅⋅  (12) 

In (3.11) the surface is presented in parametric form. One can express 
U as a function on x and find the shape of the Stokes wave in physical 
coordinates. 

We believe that the method outlined above is the most economical 
way to construct the Stokes waves. 

4  Modulational instability of Stokes waves 

The Stokes wave is unstable with respect to growing of long-scale 
modulation. This remarkable fact was first established in 1965 by 
Lighthill [Error! Reference source not found.], who calculated a 
growth-rate of instability in the limit of long-wave perturbation. As far 
as Lighthill’s growth-rate coefficient was proportional to the wave 
number of perturbation length, the result was in principle incomplete: 
somewhere at short scales the instability must be arrested. The 
complete form of the growth-rate coefficient was found independently 
in 1966 by Zakharov [Error! Reference source not found.], [Error! 

Reference source not found.] and in 1967 by Benjamin and Feir 
[Error! Reference source not found.]. The original Zakharov’s work 
of 1966 was published in Russian journal and it’s English translation 
appeared next year, when the article of Benjamin and Feir was already 
published; so the instability was called by Benjamin and Feir. Actually, 



it is not unfair because it was Fair who first observed this instability in 
experiment. 

The presented technique based on the conformal mapping makes 
possible to study modulational instability in a very compact way. It is 
convenient to use the Dyachenko equation (16), (17). Let g=1,  k=1. To 
study instability of the Stokes wave, propagating with the velocity c>1, 
one has to go to the moving reference frame by the following change of 
variables:  

 

 y=u-ct, τ=t, R=1- 
iV

c
+r.  (1) 

Then the Dyachenko equations take the form:  

 

 
∂
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 çæ
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c
+cr

u
=i(u"r'-ru" ')  

∂V
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=i(VV'-B')- 

V

c
B'- 
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c
V+gr+iu"V'  (2) 

 u"=p̄(r̄V+rV̄) 

For the stationary wave we have  

 

 r=0, u"=0,  
∂r

∂t
=0,  

∂V

∂t
=0,  

 

so, for its description we obtain the following equation  

 

 cV
u
=i(VV'-B')- 

V

c
 B'- 

ig

c
 V.  

The solution of this equation can be found in the form of Fourier series. 
Again, we put for simplicity g=1,u=1. Then  

 

 V= ä
n=1

∞
 V

n
e

-inu
 

Coefficients V
n
 can be found either directly for equation (4.3) or 

expressed in terms of Fourier coefficients a
n
 of complex elevation z. 

Indeed,  

 



 V=-ic 
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∞
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n
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1+ ä
n=1

∞
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n
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Thus  

 
 V

1
=-ica

1
 

 V
2
=-ic(2a

2
-a

2
1).  (3) 

Linearization of system (4.2) against the stationary solution leads to 
equations  
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=0,  (4) 
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∂
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(V
0
δV-δB)- 

V
0

c
δB

u
- 

ig

c
δV+gr.  

System (4.6) contains all information about stability of the Stokes 
wave. 

The modulational instability is described by a perturbation 
presented as a sum of following harmonics:  

 

 δV,r≡e
-iκu

,e
(1±κ)u-inκ

, n=1,..., κ<1.  
 

In the leading order of nonlinearity one can put  
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1
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-i(1+κ)u
+p

2
e

-i(1-κ)u
,  

V=q
1
e

-i(1+κ)u
+q

2
e

-i(1-κ)u
.  (5) 

Plugging (4.7) to (4.6) one obtains closed equations to p
1
,p

2
,q

1
,q

2
:  
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1
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,  (6) 
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1
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1
.  

Here V
2
 is the amplitude of second harmonics. Assuming 

p
1
,q

1
,p̄

2
,q̄

2
e

i(Ω+κc)t
, one gets the following equation for Ω:  

 

 [ ](Ω-c)
2
-1-κ  [ ](Ω+c)

2
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2
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)( 
1
c
-c)

2
(1-κ2
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To obtain this equation we put  
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2
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õ

 
1
c
-c
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. 

This condition appears from the natural physical requirement: if κ=0, 

then Ω=0 is a solution of (4.9). In our approximation V
2
=-ica

4
1,  c

2
=1+a

2
1

, and condition (4.10) is satisfied. Assuming that Ω<<1, one can 
simplify (4.9) to quadratic equation, that is equivalent to the equation 
derived by Zakharov in 1967 [Error! Reference source not found.]:  
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and get from (4.11) the standard growth-rate of modulational 
instability  
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1
8
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2κ2
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, 

the result that was obtained by Zakharov in 1967, 1968 [Error! 

Reference source not found., Error! Reference source not found.], 
and by Benjamin and Feir in 1967 [Error! Reference source not 



found.]. Lighthill in 1965 found long-wave asymptotic of the 
instability growth-rate,  

 

 Ω2
=- 

1
8

 A
2

 κ2
, 

with the maximum value of the growth-rate,  

 

 Ω2
=- 

1
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2

 κ2
, 

achieved at  

 

 κ2
=4 A

2
. 

The technique developed above makes possible to study the 
modulational and other instabilities with any arbitrary accuracy. 

5  Envelope equations 

The free surface equation written in conformal variables is a perfect 
starting point for derivation of envelope equation. We will start with 
system (3.2) and decompose its solution as follow:  
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where z
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 are close to  
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We will assume that the solution is weakly nonlinear, and all 
components in (5.1) are small. They are of different orders of 

magnitude. Let the leading terms z
1
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1
 be proportional to 

[epsilon]<<1. Then one has to separate fast and slow evolutions in time 

and space by introducing of "slow" variables y,τ:  
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We can do the same for Φ
n
, if n>0. For n=0, we have to put  
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where λ is some constant. After performing decomposition (5.1), 
system (3.2) turns to an infinite system of coupled equations for any 
n.For n=0, in the leading order one gets  
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For the imaginary part of (5.6) one gets the equation  
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that describes deformation of the sea level due to the presence of a 
quasimonochromatic wave. For wave packets of small amplitude we 
can put  
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For the second harmonics we have the system  
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Using (5.2), we get in the leading order  
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We will denote thereafter z
1
=z. Then, plugging z

0
,  z

2
 to equations 

for z
1
, we receive after simple calculations the following equation:  
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This equation is the Nonlinear Schrodinger equation. Meanwhile, it 
differs from the "standard" NSLE derived by Zakharov in 1968. This 
equation is written in "natural" variables u, t and is just a first 
approximation. After some calculations, which we omit, one can derive 
a more accurate equation: 
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is the Hilbert transform in the time domain. Equation (5.10) is 
equivalent to the Dysthe equation [Error! Reference source not 

found.], but plays a role of time, when τ plays a role of spatial 
coordinate. Such equations are common in nonlinear optics. This is a 
Hamiltonian system  
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Introduced variables u,τ are more convenient than traditional envelope 

variables, because in the new variable the higher-order derivatives by τ 
do not appear. 

Equation (5.9) is an integrable system (Zakharov, Shabat 1972). 
More accurate equation (5.10) is certainly non-integrable. This 
conclusion implicitly follows from numerical experiments by Ablovitz 
et al ([Error! Reference source not found.]). These authors solved the 
Dysthe equation equivalent to (5.10) and observed onset of chaos. The 
NSLE (5.9) has solitonic solutions:  
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These solutions are stable. They interact elastically and cannot merge. 

Equation (5.10) also has solitonic solution  
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where φ satisfies the equation  
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The solution of this equation is a complex function; this function tends 

to NSLE soliton (5.12) at λ→0. As far as equation (5.10) is not 
integrable, one can expect that solitons in this equation can merge. The 
most important question that remains open is the stability of these 
solitons. 

6  Numerical approach 

Many numerical schemes were developed for the solution of Euler 
equations describing a potential flow of free-surface fluid in a gravity 
field. Most of them use the integral equations, which solve the 
boundary-value problem for Laplace equation [Error! Reference 

source not found.], [Error! Reference source not found.], [Error! 

Reference source not found.]. A survey of the method can be found in 
[Error! Reference source not found.]. 



In this article we apply the spectral code to solve the Dyachenko 
equations formulated in Chapter 2. We should mention that conformal 
mapping is a routine approach to study the stationary Stokes wave. The 
equations for their Fourier coefficients, equivalent to system (3.2), 
were solved numerically by many authors (see, for instance [Error! 

Reference source not found.]). The idea to implement conformal 
mapping for simulation of essentially nonstationary wave dynamics 
emerged in the beginning of eighties (see Meison, Orzag 1981). As far 
as close DKSZ and DE equations were not derived at that time, and OE 
equation was not known to most of hydrodynamists, the authors used 
the quasi-Lagrangian approach to fluid dynamics.After some 
experiments and discussion of their results, the idea to use the 
conformal mapping war abundant for the following reason: conformal 
mapping is not good for resolution of wedge-type singularities, 
naturally appearing on the free surface of fluid. This reason is serious if 
the spatial mesh is sparse. However, modern computers make possible 
to use very fine meshes consisting of more than million points or 
spectral modes. Thus, this argument is not tenant any more. 

The DKSZ-equations, not resolved with respect to time derivatives, 
are not convenient for numerical simulation. As soon as explicit OE-
equations were rediscovered in 1993, two groups of researches started 
to develop numerical codes for their solution. The works of Chalikov 
and Sheinin were summarized in their paper of 1998 (see also [Error! 

Reference source not found.]). First results, obtained by our group, 
were published in 1996, [Error! Reference source not found.]. 
However, since 2001 we switched on solution of DE’s. We have very 
serious reasons for this choice. 

Of course, OE and DE are quite equivalent from the physical view 
point. Their solution on computer consumes comparable time. 
However, it was established empirically that numerical solution of DE 
is much more stable, robust, and reliable procedure then solution of 
OE, performed with the same method. So far, we don’t understand a 
reason for this difference. It might corroborate with a following 
remarkable mathematical fact: the "naive" WKB-type test on well-
posedness of the initial value problem leads to positive results for DE 
and negative for OE-equations (see Application). This fact was 
discovered by Dyachenko, [Error! Reference source not found.]. The 
numerical code for solution of DE’s was developed by Zakharov, 
Dyachenko and Vasyliev (see [Error! Reference source not found.]). 

Dyachenko equations are not PDE’s. They are "Hilbert-differential 
equations, which include together with derivatives with respect to u,  



 

 f→ 
∂
∂u

, 

the operation of making the Hilbert transformation  

 

 f→H f. 

From analytic view-point these two operations are completely different. 
But from numerical view-point they are similar. Indeed, in terms of 
Fourier transform operation (2.14) means  

 

 f
k
→ikf

k
, 

 

while operation (6.2) means  

 

 f
k
→i sign f

k
 

 

From computational view-point both operations are of same level 
of difficulty. Moreover, Dyachenko equations have polynomial 
(actually quadratic) nonlinearity. Thus they are ideal objects for the 
implementation of the the standard spectral code. As far as all unknown 
functions are analytic in the lower half-plane, all negative harmonics 
are zero. A number of positive harmonics was different in different 
times; the maximum number was two millions. We use the fourth order 
Runge-Kutta integration scheme to solve the equation in the domain of 

length 2π. 

7  Freak waves as a result of modulational 

instability 

In our previous paper [Error! Reference source not found.] we solve 

the Dyachenko equation in periodic box of length 2π. We put the 
gravity acceleration g=10 and choose the initial data as a superposition 
of monochromatic wave with wave number k=-50 and Gaussian 
random noise:  

 
 
Error! 



The initial spectra of function R is shown on Figure 1 (it mark is t=0), 
and a part of initial surface y(x) is shown on Figure 2. 

Forcing and dumping are absent in these computations. The total 
energy remains constant during simulation up to t=80. After that 
spectra some wider that it needs to increase the number of Fourier 
modes, or to stop the simulation. 

The initial spectra (t=0) and its evolution t=40 and t=80 are shown 
on Figure 1. 

 

Figure 1:   Development of modulational instability: spectra R(k) of 
function R(u) at different moments of time t. 

We can see, how smooth continuous spectra develop from single 
spectral harmonic with a bit of noise. The spectral "tail" steady 
propagates in the area of high wave numbers. This process can be 
interpreted as formation of singularities on the crests of individual 
waves, another words, as an onset of wave-breaking. To continue 
calculations beyond the moment t=80 one should include into 
calculation the dissipation. 

The maximal value of growth-rate of modulational instability,  
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=ω⋅ 
1
2

 (ka)
2
,  

is reached for perturbations with wave number p,  

 

 p2(ka)⋅k. 

In our computations:  

 

 µ=ka0.1 ω= 50024,  

 γ
max

0.12, γ-1
max8, p5k.  (1) 

So, the total process takes about ten inverse growth rates. During the 
most part of this time we observed linear exponential growth of initial 
perturbation. On the last stage of the process, we see fast formation of 
freak waves with an amplitude that is more than three times exceeding 
the initial one. The distance between freak waves is 5-7 periods of the 
initial wave. Comparing with (7.4), we conclude that the distance 
between freak waves is close to the length of the most fast growing 
modulation. 

 



Figure 2:   Development of freak waves due to nonlinear interaction: 
the surface of fluid at initial time t=0. 

 

Figure 3:   Development of freak waves due to nonlinear interaction: 
the surface of fluid at t=80. 

Figure 2 presents the initial shape of fluid surface. One can see that 
the initial random noise imposed on the monochromatic wave is very 
small. Figure 3 presents the shape of the surface at the end of our 
calculation. One can see the formation of "freak" wave with the 
amplitude more than three times exceeding the initial level. 
Figures 4, 5, 6 display distribution of densities of kinetic, potential and 
total energy; they are even more spectacular. One can see that the total 
energy density in freak waves exceeds the average level almost in two 
orders of magnitude. In these experiments the total number of 
harmonics N=12,228 was relatively small, thus the accuracy is limited. 

 

Figure 4:   Development of freak waves due to nonlinear interaction: 

density of kinetic energy ω
T
(x)  at t=80. 

 

Figure 5:   Development of freak waves due to nonlinear interaction: 

density of potential energy ω
U

(x)  at t=80. 

 

Figure 6:   Development of freak waves due to nonlinear interaction: 

density of potential energy ω(x) at t=80. 

Our recent experiments are much more accurate: we use 10
5
 to 

2⋅10
6
 harmonics. We solve Dyachenko equations in the periodic 

domain of length 2π, putting g=1. The initial data are chosen as a 
combination of the exact Stokes wave (wave number k=10, steepness 

ka=µ=0.15) and a long monochromatic wave with wave number k=1 

and a moderate amplitude 5⋅10
-2

. This relatively high level of 
perturbation is chosen deliberately to make shorter the period of 
exponential instability growth that is not interesting for us. At given 
conditions, the maximum growth-rate is  

 

 γ
max

 
 10

2
⋅0.15

2
0.035 

 



and γ-1
max28.6. The period of initial wave T

0
= 

2π
 3

. The simulation is 

continued until T458.842, that is more than sixteen inverse growth-
rates. We performed the computations with double precision, with the 
number of modes doubled as far as amplitude of the last mode reached 

10
-15

. The maximum number of modes was two millions. 

We observed a short period of exponential growth of perturbation, 
then, some intermediate regime of intensive modulation, which ends up 
with explosive formation of one single freak wave. Pictures of surface 
shape between T=442 and T=456,56 are presented on 
Figures 7 8, 9 10, 11. 

 

Figure 7:   The shape of surface at T=422. 

 

Figure 8:   The shape of surface at T=446. 

 

Figure 9:   The shape of surface at T=455.25. 

 

Figure 10:   The shape of surface at T=458.03. 

 

Figure 11:   The shape of surface at T=458.56. 

The time interval T=442 and T=456,56 contains seven periods of 
initial wave only. One can see fast, non-monotonic formation of the 
freak wave. At this moment the freak wave is more steep than the 
Stokes wave of critical amplitude. Amplitudes of waves, preceding the 
freak wave, are relatively small. One can see a trough just ahead of 
freak wave. Figure 12 demonstrates the fine structure of surface shape 
near the wave crest. 

 

Figure 12:   The shape of surface near the wave crest at T=458.61. 

We managed to continue our simulation until the moment 
T=458.842. The zoomed shape of the surface at that time is presented 
on Figure 13. 

 

Figure 13:   The shape of surface near the wave crest at T=458.842. 



One can see that near the crest the front face of the wave is very 
steep. This is really "wall of water". In some region the steepness is 
even negative. The curvature of the shape is plotted on Figure 14. 

 

Figure 14:   Curvature of the surface at T=458.842. 

This is actually a breaking wave. Note, that the maximum value of 
the freak wave height is three times higher than the height of the initial 
wave. Growing of wave hight up to this level from the level of 
significant wave height takes less than ten wave periods. This is a 
really fast process; it is three times faster than the developing of 
modulational instability. 

Figure 15 display the evolution of spatial density of kinetic energy 
in the domain [5.5-9.5], where the breaking takes place. 

 

Figure 15:  . The density of kinetic energy at the moments of time: a) 
T=443, b) T=448, c) T=453, d) T=455, e) T=456, f) T=458.5 

One can see that this evolution is non-monotonous. The density 
oscillates in time and finally condensates in one very narrow wave 
crest. In general, the whole process of freak wave formation is non-
monotonous. We can say that the freak wave "runs" over wave crests 
until one of them reaches extremely high amplitude. This behavior can 
be easily explained by difference of phase and group velocities: the 
energy propagates with group velocity that is twice less than the phase 
velocity. Figure 16 demonstrates distribution of horizontal momentum 
before and after breaking, at T=455 and T=456. One can see that the 
process of momentum concentration in a moving but localized area is 
monotonous. Definitely, this behavior can be explained by the fact that 
momentum is a conservative quantity. 

 

Figure 16:  . Distribution of momentum before and after breaking 

8  Do freak waves appear from quasisolitonic 

turbulence?  

Let us summarize the results of our numerical experiments. Certainly, 
they reproduce the most apparent features of freak waves: single wave 
crests of very high amplitude, exceeding the significant wave height 
more than three times, appear from "nowhere" and reach full height in 
a very short time, less than ten periods of surrounding waves. The 
singular freak wave is proceeded by the area of diminished wave 



amplitudes. Nevertheless, the central question about the physical 
mechanism of freak waves origin is still open. 

In our experiments, the freak wave appears as a result of 
development of modulational instability, and it takes a long time for the 
onset of instability to create a freak wave. Indeed, the level of 
perturbation in our last experiment is relatively high. The two-three 
inverse growth-rate is enough to reach the state of full-developed 
instability, when the initial Stokes wave is completely decomposed. 
Meanwhile, the freak wave appears only after fifteenth inverse growth-
rates of instability. What happens after developing of instability but 
before formation of freak wave?  

During this relatively long period of time, the state of fluid surface 
can be characterized as quasisolitonic turbulence, that consists of 
randomly located quasisolitons of different amplitudes moving with 
different group velocities. Such quasisolitonic turbulence is studied in 
the recent work of Zakharov, Dias and Pushkarev ([Error! Reference 

source not found.]) in a framework of so-called defocusing MMT 
model.  
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This is a heuristic model description of gravity surface waves in 
deep water. In this model, quasisolitons of small amplitude are stable, 
interact inelastically and can merge. Above some critical level 
quasisolitons of large amplitude are unstable. They collapse in finite 
time forming very short wave pulses, which can be considered as 
models of freak waves. Equation (8.1) has the exact solution:  

 

 Ψ=A e
ikx-iωt

 

 ω=k
1/2

 ( )1+k
5/2

 A
2

. (2) 

This solution can be constructed as a model of the Stokes wave and is 
unstable with respect to modulational instability. Development of this 
instability was studied numerically. On the first stage, the unstable 
monochromatic wave decomposes to a system of almost equal 
quasisolitons. Then, the quasisolitonic turbulence is formed: 
quasisolitons move chaotically, interact with each other, and merge. 
Finally they create one large quasisoliton, which exceeds threshold of 
instability and collapses, creating a freak wave. 



One can think that a similar scenario of freak wave formation is 
realized in a real sea. We like to stress that the key point in this 
scenario is the quasisolitonic turbulence and not the Stokes wave. The 
Stokes wave is just a "generator" of this turbulence. The quasisolitonic 
turbulence can appear as a result of instability of narrow spectral 
distributions of gravity waves. 

The formulated above concept is so far a hypothesis, which has to 
be confirmed by future numerical experiments. 
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