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1. INTRODUCTION 
 
In previous decades wave climate data was mainly based on 
ship observations (e.g., “Ocean wave statistics”, “Global 
wave statistics”, etc), sometimes on the wave measurements 
in selected (mainly near shore) points. Generalization of such 
data is based on models of random values and time series. 
Presently the main source of wave climate information is 
based on the results of hydrodynamic simulation (in other 
words hindcasting). A lot of models are used. Continuous 
long-term hindcasting is performed. In this paper the 
NCEP/NCAR and Sweden reanalysed wind fields are used as 
preliminary input data. Nested models Wave Watch (WW, 
versions 1.18, 2.22) and SWAN (versions 40.11, 40.31) are 
applied. Barents, Caspian, Baltic, Okhotsk, North, Black, 
Azov seas and Ladoga Lake considered as the deep and 
shallow water basins. Hindcasting was performed for the grid 
points and years, shown in the table 1. 

 
Table 1. Characteristics of continuous hindcasting has been 

made in a seas around Russia 
Grid step Sea Years Lat., 

N. 
Long.,

E. Model 
∆x ∆y 

Barents 1970− 
1999 

60°- 
81° 

30°W- 
60°N. 

WW-III 
 (1.18) 0.50 1.50 

Okhotsk 1970− 
1995 

35°- 
65° 

135°- 
165° 

“ 1.60 0.70 

Caspian 1990− 
1995 

36.5°- 
47.2° 

48°- 
55.6° 

“ 0.20 0.20 

Caspian 1980- 
1999 “ “ 

SWAN  
C.III. 

v.40.11 
9 nm 

Caspian 
(N. part) 

1988, 
1998 “ “ “ 3 nm 

Azov 1989- 
1998 

45°- 
47.3° 

34.7°- 
39.4° 

“ 10 nm 

Azov 1979− 
1998 “ “ “ 3 nm 

Baltic 1979− 
2000 

53.8°- 
66.1° 

9°- 
30° 

“ 10 nm 

North 1983− 
1998 

50°- 
70° 

5°W.- 
10°E. 

WW-III 
(2.22) 15 nm 

Black 1974-
2003 

40.90-
46.50 

27.50-
42.70 

SWAN 
C.III. 

V.40.11 
10 nm 

Ladoga 
lake 

1994-
2003 

59.90-
61.80 

29.90-
33.00 

SWAN 
C.III. 

V.40.31 
2 nm 

 
 
 

One of the main results of hindcasting is a set of wave fields 
(two-dimensional spectra S(ω,θ) on selected grids and 
synoptic terms t, in particularly). Hence, for generalization of 
the hindcasted results the model of spatiotemporal random 
fields is needed. For statistical generalization as the tools 
multivariate statistical analysis are used. The objective of this 
paper to consider some approaches, results, and models, 
based on these data. Statistical analysis of spectra parameters, 
carried out in the terms of Markov processes, has allowed to 
construct the stochastic model of a spectral wave climate 
taking into account spatial heterogeneity and temporal 
variability of wave–making conditions. Special attention is 
drawn to point and field extremes. Specific and difference 
between these two statistics is crucial for solution of some 
applied problems. 

 
 

2. WIND DATA AND MODEL INPUT 
 
Wave climate investigations, based on hindcasting, needs 
input wind data V ),( tr

rr
 on regular grid {  for time . Now 

the main source of such information is wind fields reanalysis. 
The most frequently used data is NCEP/NCAR reanalysis. It 
contains 6-hourly surface wind fields on the 1.875

}kr
r

it

0 by 
latitude Gaussian grid, covering the globe from 1948 up to 
now. During last years there arises reanalysis with more fine 
grids, but they are either limited by space (e.g., Swedish 
reanalysis) or by shorter time span or restricted access (e.g., 
ECMWF). Therefore one of the main practice problems is 
adopting of NCEP/NCAR reanalysis as the base for 
hydrodynamic simulations. Now it is known, that 
reproduction of wind field in reanalysis depends from 
specific of basin, i.e. it position, amounts of wind 
measurements, specific of shore line, etc. As an example 
three time series of wind speed absolute value are shown in 
the Fig. 1. They are for Barents, Okhotsk and Caspian seas. 

It is seen, that the best correspondence is for Barents 
Sea (correlation is ρ ). A bit worse correspondence is 
for Okhotsk sea (correlation is ). It is connected with 
specifics of wind data for this sea and their quality. However, 
for closed Caspian Sea correspondence between 
measurements and reanalysis is poor ( ρ ). Moreover, 
the far to south of the sea the worse correspondence become. 
It seems, that the main reason is scarce net meteorological 
stations as compared with the north part, and poor quality of 
measurements (see, Graham, Cardone et al. (2002), there 
were forced to reject all the data from Lencoran). 

9,0≅
7,0≅ρ

5,0≅



 

 
Fig. 1. Comparison of wind speed value time series. 
Solid line – Measurements, Dot line – Reanalysis. 

 (а) – Barents Sea (Sental Banken, 740.5N–310.0E), (b) – Okhotsk 
Sea (Odoptu, 58006’N, 143028’ E.), (с) – Caspian Sea (Tuleny 

island, 440 30N’, 470 40’E) 
 

Hence, lack of significant correlation between wind 
measurements and reanalysis force to assimilate additional 
sources of data. Such source is ship observations. Naturally 
all the difference in time of averaging between reanalysis and 
ship data are taken into account. They are brought to one-to-
one correspondence. Starting from 1948, there are about 280 
thousands ship observations in Caspian Sea. In contrast to 
classical problem of assimilation Gill (1991), the reanalysis 
array is used as it is, and this in turn cause to use stochastic 
(not hydrodynamic) model of vector spatiotemporal field with 
the following features: 
•  Wind speed is the random geometric vector V ),( vu=

r
, 

with mean value vector  and tensor of variance 

. This property requires using the tensor 
algebra for developing of assimilation procedure. 

Vm r
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• Vector field exhibit synoptic, annual, and year-to year 
variability. It demands the development of the multiscale 
stochastic model, where synoptic variability considered 
as the stationary, with the periodical modulation of 
annual rhythms. This modulation must take into account 
not only mean values, but also the variance as the 
measure of year-to-year variability. Hence, for the 
expression of the modulation process the model of 
periodically correlation stochastic process (PCSP) would 
be used, see Cyclostationarity, (1993). This model 
assume the , where )()(),()( TtDtDTtmtm VVVV +=+= rrrr

1=T  year is the period of modulation. 
• Assimilation performs in scattered time and at different 

points, consequently the approach of converting to the 
gaps is needed. 

Geometric image of tensor  is ellipse with half axis λVD r 1, λ2, 

turned to angle α. Value 21 / λλ=χ  specify shape of ellipse. 

Mean vector s m  and r.m.s.  of wind speed at 10m 
level are shown on the fig. 2 (reanalysis grid) for Caspian sea. 
It is seen, that in summer prevail winds from north. In winter 
wind variability is more, than in summer (mean vector is 
noticeably less, than diameter of r.m.s ellipse). Mean vectors 
and r.m.s. ellipses are quite dissimilar in different points and 
months.  
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It follows, that both spatial inhomogenity and periodic 
nonstationatrity must be included to stochastic model. 
Method of conditional mathematical expectations 
(Ogorodnikov, Prigarin, 1996) may be used for description of 
joint variability of wind field velocity as generalized vector 

{ kt trV ),(V =
r

, consisting from values in the points { }n
iir 1= . 

In the synoptic range for stationary case, this method reduces 
to vector autoregression: 

jtjt = −VV , .   (1) 

Where  - block (2х2) matrix of autoregression 

coefficients, 
jt ,Ψ

 - matrix of linear transformation of n⋅2 -
dimensional vector of white noise ε . For the case of large 
grid space  and close positions of points ji rr

rr
,  

identification procedure for  became unreliable. 
Therefore for closed basins with homogeneous regions 
relation (1) better to replace on the factor model with, based 
on orthogonal expansion on basis 

r
: 

r
),()(),),( 0 trtttrV

rrr
εσ++= .    (2) 

Where . Scalar 

coefficients of expansion  are general 
factors responsible for spatial variability of a field, and 

)(( 0 Τ+σ= tmm V
r

)() tt nξ

ε
r

 - 
specific factor responsible for location difference in the 
points. By this mean system of stationary processes )(tnξ  
define specific of synoptic variability. Variability of r.m.s. 

(t)(t nn σ=σ  define annual and year-to-year modulation 
of wind speed fields. Orthogonal basis 

)T),( trn +Φ=Φ
r

 are vector empirical orthogonal 
functions (EOF), which form optimal basis for tensor 
covariance function K r

 in the space of Euclidian 

vectors (see e.g., Boukhanovsky et al (2003a)). The estimates 
of the first and second EOFs for January and July are shown 
on the fig. 2(c-f). 
It is seen, that the first EOF show intensity of wind field 
variability from N to SE. In the southern part of the Sea 
summer and winter variability are different. Second EOF has 
complicated form and reveals the rotating of wind field due to 
shore pornography. First five EOF reveals 75%-80% of 
variability. This defines number of members in expansion (2). 
 
 



 
(a) 

 
(b) 

Solid line – reanalysis NCEP/NCAR, dotted line – correspondent ship observations. 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 2. Probability characteristics of wind fields over Caspian Sea (reanalysis data: vectors of mean wind speed and r.m.s. in 
January (a) and July (b), vector EOF in January (first – (c), second – (е)) and in July (first – (d), second– (f)). 



Models (1) or (2) express the variability of the wind fields 
both in synoptic, annual and inter-annual scales. The 
association of these models with the real data V

r
, observed in 

point  at the moments t , may be presented by means of 
linear measurement equation: 

s

)( kr
r
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rr
δ+Η=
rr

),( 0trVV ks ,  (3) 
where  is the measurement matrix (taking to account the 
systematic biasing, e.g. due to different averaging of the 
observations), and 

Η

),( vu δδ=δ

vu δδ ,

r
 is the vector of random error. 

The components  are correlated due to physical 
anisotropy of the wind fields. 
The coupling of equations (1,2) and (3) allows to reconstruct 
the new ensemble of wind fields V

r
 by means of 

optimal assimilation of both the data sources (reanalysis and 
observations), Himmelblau (1970). If Η  in (3) is the identity 
matrix (e.g. the averaging for all the sources is the same), the 
value of V

r
 in each point is expressed by means 

Kalman filter: 
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Here  - Kalman tensor coefficient of 

amplification, where tensor  determine the 
covariance of the observation noise in (3). The principal 
purpose of the tensor  is the weighting of the impact of 
each data source in new ensemble. These weights depend on 
the statistical features of the data: e.g. for different points of 
Caspian Sea impact of the reanalysis is 0.45-0.73 (and for 
ship observations – 0.27-0.55 respectively). Tensor 

 periodically varies from month to 
month due to annual variability of initial data. 
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Relation (4) is valid only for points and dates, with ship 
observations. Transfer of assimilated data from point to field 
is made by mean of model (2), this model consider both 
regression between adjacent points and their temporal 
variability. In such a manner model approach (1-4) create the 
array of reanalysis with assimilation. Data of wind 
measurements, which did not use for assimilation, are used 
for verification of this approach. Components  of wind 
in 108 severe storms (from 1954 to 1990) for point 
Krasnovodsk (now, Turkmen-Bashi, on the Eastern shore of 
the sea), and 3-hour observations in January-April 2001, on 
Tuleny island (North Part) are presented in the Fig. 3. It is 
seen, that assimilated data considerably better (correlation 
0.7-0.8), than initial data.  

),( vu

 
 
3. HINDCASTING PROCEDURE 
 
Difference between model simulations and measurements of 
wind waves may be due a lot of reasons. In particularly: 
• The difference of input wind fields array, used for 

calculations, from the real. This reason may be partly 
eliminated by assimilations of additional data in he 
frames of model (1-4). Also the quality of these data 
depends on the technique for wind interpolation to the 
model grid points. We use the smoothing procedure of 

interpolation for spatiotemporal fields, see Akima (1978).  
• Sample variability of wave measurements. 
• Errors due to various choices of parameters in spectral 

wave models. The default values may be not valid for 
specific basin.  

Results of hydrodynamic simulation highly depend from 
spatial grid and temporal step. Comparison of wave heights 
measured in the N. Caspian and calculated by SWAN with 
the step 1 hour and 15 minutes is presented at Fig 4. The 
directions of severe waves also shown in the same figure. It is 
seen, that for the long fetches (S, SE) different time steps 
leads to almost the same results. For short fetches (N, NW) 
15-min. time step calculations shows better agreement with 
the measurements (both by peak wave height and time of it 
arising) than calculations with 1-hour time step. The reason 
is, that N and NW storms develops over shallow part with 
short fetch (this in turn is followed by “swift time” of wave 
arising). Q-Q plots of these calculations are on the Fig. 5b. 
Moreover, as example of one of the last (see above) reason 
we present results (Fig. 5a) of calculations with different 
values of coefficients  and выС pmS

~
 (cds and stpm in SWAN 

definitions). Pointed values are shown in the table 2.  
 

Table 2. Values of coefficients С  and вы pmS
~

, 
 accepted for calculations 

 

Variants выС  pmS
~

 

By default 2.36 3.02 
1 2.85 3.62 
2 2.85 2.42 
3 1.86 2.42 
4 1.86 3.62 

 
It is seen from Fig 5a, that variations in parameters lead to 
about linear changes of wave heights estimate. Additionally 
including of whitecapping leads to underestimation of wave 
height (approximately as twice). 
Results of calculations for some severe storm cases are shown 
in the Fig.6: February 12-14 of 1952  (wind NW-N), March 
1-2 of 1952 (wind NW-NNW), November 10-13 of 1952 
(wind SE), November 20-21 of 1957 (wind NW). Values of 
measured highest waves also pointed in this fig. In 
accordance with Boukhanovsky et al (1998) the upper limit of 
extreme wave is shhh 5.24max =≅ , this is in agreement with 
values on the Fig. 6.  
 
 
4. CLIMATIC WAVE SPECTRA  
 
The size of the output data (arrays of the directional wave 
spectra) is really huge. E.g., for Barents sea (see Table 1) the 
directional spectra S(ωi,θj), calculated in more than 1200 
marine grid points. Each spectrum has 24 values in direction 
θi (step 150) and 25 in frequency. Total number of spectra is 
52 million, and bulk of data is 3.15⋅1010 number. 



 
Fig. 3. Scatterplots of observations and reanalysis data for Krasnovodsk (I) and Tuleny (II).  

(a,c) –without assimilation, (b,d)- with assimilation. 

 
Fig. 4. Parts of significant wave height  time series. North Caspian, point 44.10N, 48.49E (depth 24 m). 

1 – measurements. 2 - SWAN with step 1 hour. 3 – SWAN with step 15 minutes.  
)(ths

 
Fig. 5. Q-Q plots of SWAN calculations for N. Caspian (February, 2002).  

(а) – values from table 2, (1-4 – the same as in table 2), (b) – different time steps; 1- 15 minutes, 2 – 1 hour. 



 
 

Fig. 6. Significant wave heights during peak of sever storms. The highest observed wave heights also are pointed. 
 

 
 



Really to any ensemble of calculated S(ω,θ, r
r

,t) we may set 
mathematical expectation ms(ω,θ, r

r
,t) and, if needed, 

covariance function Ks(ω1,θ1,ω2,θ2, 1r
r

, 2r
r

,t1,t2), of 
{ωi,θi,ωk,θk}, but even in stationary (for t) case this statistic is 
characterized by more than 50 millions of number. High 
measure of these values and the complexity in interpretation 
induces to adopt some simplifications in calculations of wave 
climate statistics. This simplification is based on the 
parameterization of the directional spectra and further 
evaluation of the ensemble of these parameters. 
The parameterization allow to write wind wave, Sww, and 
swell spectra Ssw , as non-random functions of a set of 
random arguments Ξ: 

( ),(|,),()(),( trSQSS
def r

Ξθω=θωω=θω ) . (5) 
In the present study as parameters in Ξ are selected wave 
height, period, spectral shape, frequency of spectral peak 
ωmax, and main wave direction θmax. A single peak wave 
spectra  is completely determined by 

these parameters and more general spectra S(ω,θ)  are 
obtained as 

),|,( maxmax θωθωpS

∑
=

θωθω=θω
fieldsn

k

kk
kk SpmS

1

)(
max

)(
max00 ),|,(),( , (6) 

where m00, the zero moment of the spectrum, is equal to the 
total variance of wave field, and  are weight factors for 

each system so that . Other parameters of 

spectrum (5) can be expressed as nonlinear functions of 
spectral moments m

kp

1=
1∑ =

N

k kp

k,j .The most simple way to determine the 
parameters )(

max
)(

max , kk θω  is the minimization of the deviation 
index, Liu (1983). 
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Where  are the values of the model output (for frequency 

 and direction θ ). For the solution of (7) the adaptive 
multi-step Monte-Carlo optimization approach is used. 

ijS

iω j

The model (5-7) allows easily to distinct one, two and 
multipeaked (by variables ω and θ) spectra. Hence, the 
genetic classification may be presented, see Fig. 8 (for the 
SW part of the North sea). All the details of classification are 
published in (Lopatoukhin et al, 2002). The following five 
classes of wave spectra are selected:  
• Wind waves (k=1); 
• Swell (k=2); 
• Wind waves and “young” swell with close frequencies 

(k=3); 
• Wind wave and “old” swell separated both by frequency 

and direction (k=4); 
• Wind waves and swell without separation (complicate 

sea) (k=5). 
If we associate each class with the stable state of the sea with 
number , the synoptic variability of sea waves may be 
presented as the Markov chain  with the transient 

probability matrix 

k
)(tkk =

{ } mjijkPp tt
ij ,1,,)()1,( ===+ ki tt | ()1 =+  

and limit probability vector { } mjjkP t
j ,1,)( ===π . In the 

Fig. 8 the transitions between classes are also shown as a 
“star” diagram, where the arrows correspond to different 
transient probabilities. E.g., the probability of transition 
during 3 hours from Wind waves (Class 1) to Wind waves 
and “young” swell (Class 3) is 5%, and 29% - return. The 
probability of the cases with the same class after 6 hours, is 
pointed on the arcs; e.g. for the wind waves this value is 89%. 
The spatial distribution of limit probability (as unconditional 
occurrence of each class of the spectra) in the North Sea is 
shown in the Fig. 7. 

 
Fig. 7. Spatial distribution of the occurrence of 5 classes of 

directional spectra in the North Sea. 
1÷5 are the classes of spectra 

 
It is clearly seen, that the wind waves are prevailing in over 
the sea. The occurrence of complex sea with “fresh” swell is 
decreased from North to South. The model (5-7) allows to 
estimate the probability characteristics of directional spectra 
S(ω,θ) − mean value, r.m.s, probability, tolerant and 
confidence intervals of the spectra by means of the 
correspondent characteristics of the parameters Ξ. E.g., in the 
Fig.9 the results of the estimation of mean spectra with 70% 
probability intervals for each class, for SW part of the North 
Sea, are presented. All the directions are showed in Wave 
Watch III notation (zero is the East, and rotation counter 
clockwise). 
Thus, the parameterization procedure (5) is the powerful tool 
for the decreasing of the data dimensionality. It allows 
reducing the analysis of the set of directional spectra to the 
spatio-temporal random fields of its parameters ),( tr

r
Ξ . In 

this paper we only consider the most basic parameter, the 
significant wave height ),( trh

r
, defined as four times the 

standard deviation of the surface height. 



 

 
Fig. 8. Transient “star” diagram for directional spectra variability. SW part of North Sea. 

 

 
Fig. 9. Mean values and 70% probability interval for frequency spectra and angular distributions of directional spectra in Eq. (5).  

Classes 1-4, SW part of the North Sea. 



5.   MULTISCALE STOCHASTIC MODELING OF 
WIND WAVE CLIMATE WITH APPLICATION TO 
EXTREMES 

 
Metocean fields, like ocean waves, have a complex spatial 
and temporal variability (synoptic, annual, year-to-year). 
Traditionally, the approach for statistical formalization of 
such phenomena has been based on a multiscale hypothesis as 
proposed by Andrey Monin (1986). The hypothesis suggests 
modelling the total variability by means of a set of stochastic 
models for each temporal scale separately, and with the 
interdependence taken into account parametrically. 

 
5.1.   Synoptic variability 

 
The synoptic variability corresponds to temporal scales from 
a few hours to some days. For atmospheric processes, the 
associated spatial scales are 2000–3000 km, as opposed to 
500–700 km for the oceanic ones. The nature of the synoptic 
variability may be explained as a stochastic alternation 
between storms and calms (Lopatoukhin et al., 2002). It is 
possible to generalize definition of storms to the spatio-
temporal domain, 

{( ) : ( , )t h tΩ = ≥r r }z ,                                             (8) 
Where z is the level of the storm and additional parameters 
are defined in Table 3. Some additional explanations are 
presented on the Fig. 10(a). 
Note that { ,  characterize the extreme and }h+ +r 0}h r{ ,  the 
general behaviour of the storm in space. The mean, r.m.s. and 
95% quantiles for h+, h , and L show that the parameters of 
the storms are strongly dependent on z and have a clear 
annual variability. 

 
Table 3. Parameters of a storm. 

 
Description Notation Definition 

Area ( )S tΩ  
( )t

d
Ω∫ r  

Equivalent 
diameter 

( )L t  2 ( )S t πΩ  

Averaging 
wave height ( )h t  ( )

( , ) ( )
t

h t d S tΩΩ∫ r r  

Geometric 
centre 
 (“centre of 
gravity”) 

0 ( )tr  ( , ) ( , )h t d h t d
Ω Ω∫ ∫r r r r r

 

Maximum 
wave height ( )h t+  ( ) [ ]max ( , )t h t∈Ωr r  

Location of 
the maximal 
wave height 

( )t+r  { }: ( , ) ( )h t h t+=r r  

 
Fig. 10 shown these parameters, marked on the map. The 
storm velocity , and although the mean velocity 
of the storms is only 3.4-11.9 (km/h), the variations may 
reach 50 (km/h) with rather high variability. 

0 / t= ∂ ∂W r

 
Fig. 10. Illustrations of the storm impulses 

parameterisation 
 
In general, only one storm occurs at a time, and the position 
of highest wave is not far from the storm’s geometrical 
centre, . Moreover, { ,  may be applied to define the 0r }h L+



storm’s spatio-temporal behaviour. It allows simplify the 
solution of stochastic differential equations, driving the 
variability of sea wave fields 

( , )h h G t
t

∂
+ ⋅∇ =

∂
W r

Ξr

}

0 ℑ

.                                       (9) 

Where  a source function. The solution may be 
presented as the impulse stochastic process, using Galerkin 
techniques 

( , )G tr

( , ) ( ) ( , | )k k kk
h t a t t= Φ∑r ,                          (10) 

where {  are spatio-temporal basis functions, depending 

on a set of parameters , and {  the random 
corresponding coefficients. The Lagrange approach 
considered below writes the field as moving spatio-temporal 
impulse structures, and estimates the characteristics 

 directly from the initial data set, without 
considering the source function.  

kΦ

kΞ

kΞ }ka

k ta ),(

Let us consider a storm { . 
Our aim is to parameterize the storm impulses in terms of the 
overall maximum wave height and the associated storm 
area . This parameterization, given in terms of a set of 
parameters 

0 0( ), ( ), ( )}, [ , ]t h t S t t t t+
Ω ∈ +r

H +

+S
{ }ℑ, 0 ( )t

( , )H + ℑ ( , )H L+ +

++ , SH  and the Markov process for r , 
generalizes the BOLIVAR approach (Lopatoukhin et al., 
2002b) from time series to spatio-temporal fields. The data 
have shown that  and are highly 
dependent: (correlation is 0.7−0.9). 
Since H is an extreme value, conditional on ℑ  distribution 
is approximated by 1

+

st limit (Gumbel) distribution: this has 
been validated in (Rozhkov et al., 1999). 
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Relation (11) is valid for deep water, though infinitely large 
waves may arise. For shallow water third parameter, 
connected with limit wave height must be introduced. Then, 
instead of (11), we have 
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Parameter C is connected with limit wave height hlim in 
specific place: 
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Limit wave height is different for two limiting situations. The 
first one is propagation of the waves from deep water to 
shallow. The second – wave development in a shallow water 
basin. (Classical example is closed Azov Sea with extreme 
depth about 13 (m), or N. Caspian in the cases of northern 
winds). For the first case, on the grounds of waves of limited 
amplitude (Sarphaya, Issakson, (1981)): 
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g
HCC

g
h                                      (14) 

here τ – wave period. Coefficients in (14) are C1=0.02711 и 
C2=28.77.  

 

 
Fig. 11. Quantile biplots of maximal waves in a storm +H  
for shallow water of the North Caspian Sea (depths ~12 m). 

(a) – Distribution (11), (b) – distribution (12) 
 
In the second case due to some Russian Handbooks and 
Design Codes: 

8.04.0062.0 HVh = ,     
or      (15) 

5.022 )/(06.0/ VgHVhg = ,     

here h  - mean wave height, H- water depth, V- wind speed. 



Fig.11 definitely shows the difference of approximations (11) 
and (12) for shallow water. 
 
It now remains to specify a time function for ( )h t+  and a 

spatial field function Φ  as in Eq. (10). It is shown in 
(Lopatoukhin et al., 2000) that a piecewise linear function in 
time is sufficient, whereas for 

( )r

( )Φ r  it is possible to use an 
elliptic cone (1st order), or a elliptic paraboloid (2nd order) 
(Boukhanovsky et al., 2003b). This parameterisation, given in 
terms of a set of parameters { }ℑ+ ,+ , SH  and the Markov 
process for r , generalizes the BOLIVAR approach from 
time series to spatio-temporal fields. 

0 ( )t

 
5.2.    Annual and year-to-year variability 
 
The storm threshold in Eq. (12) really varied in time and 
space due to annual and year-to-year variability.  In this case 
the scalar analogue of Eq. (3) in Eulerian form is used: 

( , ) ( , ) ( ) ( , ) ( , )k kt
k

t m t a t t tζ ϕ= + +∑r r r rε ,            (16) 

where m  is mean value of wave heights field, )(• )(•kϕ  are 

the empirical orthogonal functions, and ( , t)ε r is residual 
white noise (both in space and time). The noise variance is 
typically not more than 20% of . The stochastic processes 
a

2
ζσ

k(t) may be presented in the form of independent scalar 
autoregressive models: 

∑
=

+−=
p

1j

)k(
k

)k(
jk )t()jt(a)t(a δΦ .  (17) 

Here the  coefficients are calculated from the covariance 

function K

)k(
jΦ

(
ka )τ , and  is a constant variance Gaussian 

white noise, only dependent on k. The relations (15) and (16) 
constitute a stochastic model of the inhomogeneous (by r) 
and periodically correlated (by t) random field 

)t()k(δ

( , )tζ r  of 
significant wave height. 
 
 
6. EXTREMES IN THE POINT AND IN THE SPACE 
 
6.1.     Extremes in a point 
 
There are a lot of approaches to calculations of extreme wave 
heights in a point. The main are IDM (Initial Distribution 
Method), AMS (Annual Maxima Series), POT (Peak Over 
Threshold) and BOLIVAR. Their advantages and 
disadvantages are investigated elsewhere, Lopatoukhin at al 
(2000). Short resume with the example for one region of the 
Mediterranean is presented in the fig 12 and explained below. 
Comparison of various approaches for estimation of wave 
heights is shown in the table 4. 
IDM method estimates the extreme wave height hmax of 
certain return period as quantile hp of wave height distribution 
F(h) with probability p (see fig. 12a). For log-normal long-
term wave height distribution, the quantile with probability p 
can be computed as follows: 









=

s
U

hh p
p exp5.0 .   (18) 

Up is quantile of the standard normal distribution. Here 
quantile hp should be understood as wave height, which is 
likely to be observed once (at the standard synoptic 
observation times) in T years. In applied studies the period T 
is called “return period”, and the corresponding probability is 
defined as  

T
tp

⋅⋅
∆

=
36524

.                                           (19) 

Where ∆t is interval (in hours) between subsequent 
observations (say, 6 hours). Then we get p = 0.000684/T. For 
∆t = 3(hr), we get p=0.000342/T. 
AMS approach defines hmax as the last term of the ranked 
independent series of wave heights h (see fig 12b). Thus it is 
a random value with Gumbel distribution 

)))(exp(exp()( bxaxF −−−= ,  (20) 

where a, b – parameters. 
In the POT approach the k strongest storms with the heights 
greater than selected threshold. In the fig 12c, threshold is 
4.5m. Thus, the POT method estimates depend on the choice 
of threshold and approximations for corresponding 
distributions. Unlike other methods, in the POT approach the 
uncertainty is connected both with the wave height  and 
return period. For example, the 25-year wave height estimate 
in fig. 12d is found to be in the range of 7.2 – 8.4 m, and 
return period is in the range of 20-45 years. 

*
ph

BOLIVAR approach considered n samples, consisting of 
heights  of the largest waves in the k the strongest storms 
in year number i,(i=1,..,n; j=1,…,k) BOLIVAR approach 
exclude the limitations of the POT method and take into 
account the asymptotic characteristics of AMS.  

+
ijh

 
 

Table 4. Values of extreme (significant) wave heights, 
calculated by various approaches. NW Mediterranean. 

 
T, years Approach 

1 10 25 50 100 
IDM 5.2 7.0 7.8 8.5 9.1 
AMS 4.8 6.0 6.6 7.1 7.6 
POT 5.5 5.9 6.3 6.7 7.0 
BOLIVAR 1st maxima 4.8 6.0  7.1 7.6 
BOLIVAR 2nd maxima 3.8 4.8  5.5 5.8 
BOLIVAR 3rd maxima 3.4 4.2  4.7 4.9 

 
The AMS method has the most solid theoretical foundation. 
The BOLIVAR method represents its further development 
that includes into consideration the second, third and, other 
maximums in a year. Each of the considered methods has its 
advantages and disadvantages and has to be used accordingly.  
 
 



(a) (b)

 
                                                     (с)       (d) 

 
Fig.12. Distributions of extreme (significant) wave height HS (m).  

IDM approach (a), AMS (b), POT (c,d). NW Mediterranean, 1969–1984. 
 
 

 
6.2.     Extremes in a field 

 
Storm evolution in any basin may be presented as an impulse 
random field (10). At any time the impulse {  can be 
presented as an elliptic cone. The size of the storm 

}kΦ

{ })(),(),(0 tSthtr Ω
+  is equal to the fraction of total area of the 

region, where wave heights larger than z, see Table 3. 
Parameterize of storm in a space impulses in terms 
generalizes the BOLIVAR approach from time series to 
spatio-temporal fields. 

The behaviour of the extreme wave in a single storm in a 
fixed point is known, Boukhanovsky et al (1998). For spatial 

region this problem more complex, because unique 
enumeration available only for two-dimensional waves. In the 
simplest case, with a narrow angular spreading of sea waves, 
the generalized distribution of maximal wave in a spatial 
storm region is 
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Here 2L is the equivalent diameter of the storm, where 

L= 2 ( )S t πΩ , S =( )tΩ
( )t

d
Ω∫ r . For small-amplitude waves 



)r(h)r( 36≈λ . The storm impulse )r(h  is approximated 
by expression 

 ( )mLrzhhrh /)()( −−= ++ ,   (22) 

where m is the shape parameter of storm impulse (m=1 – 
cone, m=2 – parabolic etc). 
In first step simulation procedure consist of estimation the 
parameters for each synoptic term t. The level z may depend 
on the season and obtained from models of annual variability, 
as described in (Boukhanovsky et al., 2003b). The second 
step is the spatio-temporal impulse parameterisation of the 
time series { ( , the parameters of equation (10), see 
table 3, and the parameters (transition and limit probabilities) 
of the Markov chain model for { ( .  

), ( )}h t L t+

0 )}tr
The simulation starts with the Monte-Carlo simulation. Based 
on the realizations, the durations {  are found and the 

value of 

}kℑ
+H  is simulated from Eq. (11) or (12) The diameter 

L+ is obtained of a regression on +H , and finally, all 
synthesized parameters are substituted into Eq. (10). 
Generating a synthetic field for all points , where the 
shape of the storms is approximated by (22). Thus, the final 
results of the simulation are the set of spatiotemporal fields 
with the same stochastic properties, as the initial data. It 
allows applying such approach for estimation of non-
observable extreme events.  

( , )tr

The main question is: does the spatiotemporal field model 
(10) reproduce the estimates of T-years extremes in the fixed 
points estimated by approaches like BOLIVAR or AMS 
(Lopatoukhin et al., 2000b)? For answering this questions the 
extremes for return period of 1, 10, and 100 years were 
calculated for the points 1-3 in Fig. 13 by the AMS approach 
(with parametrical confidence intervals) and by the Lagrange 
stochastic simulation (see Table 5). All simulations were 
carried out for two types of the spatial impulse approximation 

 in (10), see also (22). The 1( )Φ r sr order shape is an elliptic 
cone, and in this case the model (10) underestimates the T-
years extremes. By assuming the more reasonable form in 
(22) of an elliptical paraboloid for Φ , the values become 
in better agreement with the AMS method. 

( )r

 
 

Table 5. Sample and simulated values of T-year wave 
heights in Barents Sea. 

 
Point # 1 2 3
Return period T 1 100 1 100 1 100 

Point 
data 10.3 16.7 9.6 13.7 9.0 13.2 

Sample 
estimates 90% 

CI* 
9.3 
11.8 

15.0 
19.2 

8.6 
11.0 

12.3 
15.8 

8.1 
10.4 

11.9 
15.2 

1st 
order 8.0 13.0 6.9 9.0 6.7 8.5 

Simu-
lation 2nd 

order 9.8 15.1 9.2 14.5 8.4 13.4 

*CI is the confidence interval 

Fig. 13 shows the extreme wave heights (0.1% probability) 
with return period 100 years. This figure (as similar, 
published in different papers, handbooks an atlases) is a result 
of calculation at various points and driving isolines. Data of 
such figure represent the wave heights estimates that are 
possible in any point, but not in all points simultaneously. In 
the last case the return period of such events will more rare, 
than 100 years.  
This argument became clearer from the Fig. 14. There are 
shown annual maxima  in the point “A” and conditional 

values  in the points B

)( A
sh

)/( AB
sh 1 and B2. They are at distance 

120 and 240 km from point “A”. It is seen, that in spite of 
significant distance between points, the values of wave 
heights of rare probability are dependent. This also means 
that the same return period may appropriate to different 
combinations of waves. E.g., on the Fig 14a, 100 years wave 
in the point “A” is 14.4m, and then wave height in the point 
“B1”is 13.7m (i.e. with return period 50 years). Another 
conclusion from the Fig. 14 is that 100-year event may result 
from a set of events each of it is less than 100 year. E.g., 100 
years event in the field will be when simultaneously:  
• in the point “A” =12.1m (10 years return period); A

sh
B• in the point “B1”  (30 years return period); mhs 2.131 =
B• in the point “B2”  (60 years return period). mhs 8.132 =

The results of the model verification are satisfying and give 
confidence to use the model for analysis and numerical 
studies of spatio-temporal variations of extreme synoptic 
events.  

 
 

Fig. 13. Spatial estimates of maximal waves (0.1%) once 
100 years in the Barents sea. 

 
Complete solution of the problem of estimation of extreme 
waves joint variability calls for multiscale stochastic models, 
which simulate ensemble of spatiotemporal fields in the 
scales of synoptic, annual and year-to-year variability. This is 
the task of further investigations, but results similar to 
presented at Fig. 13, 14 and their interpretation allows solving 
numerous applied problems. 



 
Fig. 14. Points and isolines of return periods of annual 

maxims. Significant wave heights  in the point “A” and 

conditional wave heights  in the points «B

Ah 3/1

ABh |
3/1 1» (a) and 

«B2» (b), at the same time. 
 
 
 
ACKNOWLEDGMENTS 
 
Investigation is supported by INTAS 2001-2156-project 
“Freak wave generation in the ocean” 
 
 
REFERENCES 
 
Akima H. (1978) A method of bivariate interpolation and 
smooth surface fitting for irregularly distributed data points, 
ANC Transactions of Mathematical Software, 4, 1978, pp. 
160-164 
Boukhanovsky A.V., Lopatoukhin L.J., Ryabinin V.E. 
(1998). Evaluation of the highest waves in a storm./ Marine 

Meteorology and Related Oceanographic Activities/ World 
Meteorological Organization. Report N 38, WMO/TD -N 
858, 1998, 19p. 
Boukhanovsky A.V., Krogstad H.E., Lopatoukhin L.I., 
Rozhkov V.A. (2003a). “Stochastic simulation of 
inhomogeneous metocean fields. Part I: Annual variability”. 
Proc. Of ICCS’03, Lectures Notes in Computer Science. 
LNCS 2658, pp. 213-222. 
Boukhanovsky A.V., Krogstad H.E., Lopatoukhin L.I., 
Rozhkov V.A., Athanassoulis G.A., Stephanakos C.N. 
(2003b). “Stochastic simulation of inhomogeneous metocean 
fields. Part II: Synoptic variability and rare events”. Proc. Of 
ICCS’03, Lectures Notes in Computer Science. LNCS 2658, 
pp. 223-233. 
Cyclostationarity in communications and signal processing. 
(1993). Ed. W.A. Gardner, IEEE Press, 1993. 
Gill M., Malanotte-Rizoly P. (1991). Data assimilation in 
Meteorology and Oceanography. Adv. Geophys, v.33, p.141-
266. 
Graham C., Cardone V.J., Ceccacci,  E..A., Parsons M.J. 
Cooper C., Stear J. (2002). Challenges to wave hindcasting in 
the Caspian Sea. 7th Int. Workshop on Wave Hindcasting and 
Forecasting. 2002. Banff, Alberta, Canada. 
Himmelblau D. (1970). Process analysis by statistical 
methods. John Willey & Sons, Inc., NY, 1970. 
Liu P.C. (1983). A representation for the frequency spectrum 
of the wind-generated waves. Ocean Engng., vol. 10, No 6, 
1983, pp. 429-441. 
Lopatoukhin L.J., Boukhanovsky A.V., Rozhkov V.A. 
(2000a) “Approach and method of calculation of extreme 
wind waves in a deep and shallow water”. Proc. Int 
Conference LITTORAL 2000. “Responsible Coastal zone 
management. The Challenge of the 21st Century”. Period 
Biol, vol. 102, Supplement 1, Zagreb, p.513-517. 
Lopatoukhin L., Rozhkov V.A., Ryabinin V.E., Swail V.R, 
Boukhanovsky A.V., Degtyarev A.B. (2000b). “Estimation of 
extreme wind wave heights” // World Meteorological 
Organisation (WMO). WMO/TD-No. 1041, 2000, JCOMM 
Technical Report.  
Lopatoukhin L., Rozhkov V., Boukhanovsky A., Krogstad 
H., Athanassoulis G., Stephanakos C., Degtyarev A. (2002) 
“The spectral wave climate in the Barents sea”. Proceedings 
of Int. Conf OMAE’02, June 23-28, 2002, Oslo, Norway. 
Monin A.S. (1986)  “An Introduction to the Theory of 
Climate”. D. Reidel, 1986. 
Ogorodnikov V.A., Prigarin S.M. (1996) Numerical modeling 
of random processes and fields: algorithms and applications. 
VSP, Utrecht, the Netherlands, 1996, 240 p. 
Rozhkov V.A., Boukhanovsky A.V., Lopatoukhin L.J. 
(1999). “Method for calculation of extreme metocean 
events”. Proc. Int. Conf. MEDCOAST’99, Turkey, 1999 
Sarpkaya, T., and Isaacson, M. (1981) “Mechanics of Wave 
Forces on Offshore Structures”, Van Nostrand Reinhold, New 
York. 
 


