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1.     INTRODUCTION 
 

Two global data sets of 6-hourly fields of significant 
wave height data covering more than 4 decades are 
presently available: 

• The American National Center for 
Atmospheric Research and the National 
Centers for Environmental Prediction 
(NCEP/NCAR) have produced a global 
reanalysis of the surface winds from 1958-
1997 which continues to be extended (Kalnay 
et al., 1996). Cox and Swail (2001) used these 
winds to force the second generation ODGP2 
spectral ocean wave model (see Cox and 
Swail, 2001) and produced the first 40-year 
wave reanalysis covering the whole globe, 
hereafter named the Cox&Swail data set. 

• The European Centre for Medium-Range 
Weather Forecasts (ECMWF) produced the 
ERA-40 data set (Uppala, 2001), a reanalysis 
of global variables from 1957 to 2002. It used 
ECMWF's Integrated Forecasting System, a 
coupled atmosphere-wave model with 
variational data assimilation, which is a state-
of-the-art model very similar to the one used 
operationally, but with lower resolution. A 
distinguishing feature of ECMWF's model is 
its coupling, through the wave height 
dependent Charnock parameter (see Janssen et 
al., 2002), to a third generation wave model, 
the well-known WAM (Komen et al., 1994), 
and so wave data is a natural output of ERA-
40. 

The availability of these data sets makes it possible to 
carry out detailed global studies of the wave climate 
and its variability, which until recently could only be 
made from sparsely located, though high quality, buoy 

data covering about 20 years (e.g. Gower (2002)), from 
global but subsampled altimeter data or visual ship 
observations (e.g. Gulev et al. (2003)), or from wave 
analysis or hindcasts with limited spatial coverage or 
duration (e.g. Gűnter et al. (1998), Young (1999)). 

There are, however, still some deficiencies associated 
with reanalysis data sets. Although the reanalysis 
ensures, by using the same numerical model throughout, 
that no inhomogeneities due to different analysis 
techniques exist, there remain inhomogeneities due to 
differences in availability and coverage of the 
observations used. Also, in order to obtain such long 
data sets, compromises must be reached in terms of 
resolution. Although reanalysis data sets are produced 
by state-of-the-art models, the resolution is lower than 
those used operationally and, therefore, the quality of 
their wind fields, and consequently of their wave fields, 
is lower. 

Limitations in the Cox&Swail data set motivated a 
kinematical improvement of the NCEP/NCAR 
reanalysis wind fields for the North Atlantic, which 
involved a reported 10,000 meteorologist hours of 
effort (Swail and Cox, 2000). The corrected wind field 
was then used to force a third generation wave model, 
the OWI 3-G wave model (see Swail and Cox (2000) 
and references therein), producing a very high quality 
wave data set, hereafter named the Swail&Cox data set. 

Validation of the Swail&Cox data set, the ERA-40 data 
set, and the Cox&Swail data set against buoy and 
altimeter observations has shown that the ERA-40 data 
set, although severely underestimating high sea states, 
compares better with observations in terms of root mean 
square error and scatter index than the Cox&Swail data 
set, and that the Swail&Cox data set is the best in 
describing wave data in the North Atlantic (see Caires 
et al. (2004)). 

Limitations in the ERA-40 significant wave height data 
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set, which besides the underestimation mentioned above 
also includes inhomogeneities due to the assimilation of 
ERS-1 and ERS-2 altimeter wave heights for the period 
1992-2001, also motivated their correction by Caires 
and Sterl (2005). These authors corrected the data 
through a non-parametric regression method that 
predicts the bias between significant wave height ERA-
40 data and Topex altimeter measurements. This 
technique, which is much cheaper than kinematically 
improving the wind fields, also produced a very high 
quality data set - and in this case a global one. The 
corrected ERA-40 data set is hereafter referred to as the 
C-ERA40 data set. 

Although kinematically improving the wind fields 
seems to be quite effective in producing better 
significant wave height fields, the high cost involved 
restricted the study of Swail and Cox (2000) to the 
North Atlantic. Also, errors in the forcing wind fields 
explain only some of the deficiencies in predicted wave 
fields; other sources of deficiencies are wave model 
inadequacies and resolution. In this article we will use a 
non-parametric method to correct the Cox&Swail data 
set and investigate whether the method is as effective as 
the kinematic improvement of wind fields. We will 
concentrate just on two years, 1994 and 1997, for which 
we have Cox&Swail, Swail&Cox, ERA-40, C-ERA40 
and Topex data simultaneously available. 

Specifically, we shall use the Cox&Swail and Topex 
data of 1994 as a ‘learning data set’ to correct the 
Cox&Swail data of 1997, and use the Cox&Swail and 
Topex data of 1997 to correct the Cox&Swail data of 
1994. The resulting corrected data set will be referred 
to as the C-Cox&Swail data set. The reanalysis data, 
Topex and buoy measurements will be used to assess 
the quality of the C-Cox&Swail data set. 

This paper is organized as follows: We start by 
describing the data sets that will be used in the data 
correction and validation. Next we describe briefly the 
basis and the present application of the non-parametric 
correction method, then summarize and discuss the 
results, and finally state our main conclusions. 

 
2.     DATA DESCRIPTION 
 
2.1 REANALYSIS DATA  
 

We consider four significant wave height ( sH ) data 
sets: Cox&Swail, Swail&Cox, ERA-40 and C-ERA40. 
These were already introduced, so here we just add 
information on their coverage and resolution. 

All data sets consist of 6-hourly fields. The Cox&Swail 

data set is the one with lower resolution, with the data 
on a global 1.25º x 2.5º latitude/longitude grid. The 
Swail&Cox data set is the one with the smaller spatial 
coverage, but with the highest resolution, with data on a 
0.625º x 0.833º latitude/longitude grid covering the 
North Atlantic. Both the ERA-40 and the C-ERA40 
data sets are global and the data is on a 1.5º x 1.5º 
latitude/longitude grid. 

 

2.2 OBSERVATIONS 

 

We will take recourse to both buoy and altimeter Topex 
sH  observations to validate the reanalysis data sets. 

The Topex data will also be used in the creation of the 
C-Cox&Swail data set. Since data from 1994 will be 
used in the creation of data from 1997, and vice versa, 
the 1994 and 1997 Topex data sets are independent for 
the validation of C-Cox&Swail data for the respective 
period. 

Buoy observations are the most reliable wave 
observations, but they are limited in space and time. 
Most buoys are located along the coast in the Northern 
Hemisphere, and are available only after 1978. We use 
measurements from the American National Data Buoy 
Center (NDBC-NOAA), which are freely available at 
http://www.nodc.noaa.gov/BUOY/buoy.html. 

The buoys are situated along the coasts of North 
America. From the available NDBC-NOAA buoy 
locations 16 have been selected for the validations: 4 
around the Hawaiian Islands (buoys 51001, 51002, 
51003 and 51004), 3 in the Gulf of Mexico (42001, 
42002 and 42003), 4 in the Northwest Atlantic (41001, 
41002, 41010 and 44004), 2 off the coast of Alaska 
(46001 and 46003), and 3 in the Northeast Pacific 
(46002, 46005 and 46006). 

Selection criteria were the distance from the coast and 
the water depth. Only deep water locations can be taken 
into account since no shallow water effects are 
accounted for in the wave models, and the buoys should 
not be too close to the coast in order for the 
corresponding grid points to be located at sea. The buoy 

sH  measurements are available hourly from 20-minute 
long records. Although these measurements have gone 
through some quality control they are processed further 
using a procedure similar to the one used at ECMWF 
(Bidlot et al. 2002) and described in Caires and Sterl 
(2003). In order to compare the reanalysis with the 
observations, time and space scales must be made 
compatible. The reanalysis results are available at 
synoptic times (every 6 hours) and each value is an 



estimate of the average condition in a grid cell, while 
the buoy measurements are local. Since the ERA-40 
resolution is in-between the resolution of the other 
reanalysis products, we will use the resolution of the 
ERA-40 data as a reference. Therefore, the reanalysis 
data are compared with 3-hour averages of buoy 
observations, 3 hours being the approximate time a long 
wave would take to cross the diagonal of a 1.5º x 1.5º 
grid cell at mid latitude. To get reanalysis data at the 
buoy location, the reanalysis data at the appropriate 
synoptic time is interpolated bilinearly to the buoy 
location. 

While buoys provide high-quality continuous 
measurements at fixed points, satellite-born altimeters 
provide near-global coverage, but every point is 
sampled only once in several (typically 10) days. We 
use along-track quality checked deep water altimeter 
measurements of sH  from TOPEX, obtained from the 
Southampton Oceanography Centre (SOC) GAPS 
interface (http://www.soc.soton.ac.uk/ALTIMETER; 
Snaith, 2000). The drift observed in TOPEX wave 
heights during 1997 is corrected according to Challenor 
and Cotton (1999), and in order to make the TOPEX 
observations compatible with the buoy observations the 
relationship 07.005.1 −= stopexsbuoy HH  (Caires and Sterl, 
2003) is used. 

The satellite measurements are performed about every 
second with a spacing of about 5.8 km. Super 
observations are formed by first grouping together 
consecutive measurements crossing a 1.5º x 1.5º region, 

i.e., observations that are at most 30 seconds or 25.1 º 
apart. The satellite observation is then taken as the 
mean of these grouped data points. A quality control 
similar to the one applied to the buoy data is done. The 
reanalysis data is linearly interpolated in space and time 
to the mean location and the mean time of the altimeter 
observation. 

 
3.     NON-PARAMETRIC CORRECTION 
 

Results about the consistency of non-parametric 
regression estimators of the conditional distribution 
function, estimators of conditional quantiles, and 
estimators of conditional means for sequences of certain 
conditionally stationary processes to which wave data 
seems to conform approximately have been proved in 
the statistical literature (see Caires and Ferreira (2005)). 
Caires and Sterl (2005) used these results as a 
theoretical foundation for the use of non-parametric 
estimators for the correction of wave model data; they 
provided a detailed motivation for the use of non-

parametric regression in correcting wave model results 
and proposed a correction method. Here we will briefly 
reproduce the motivation and method for the sake of 
completeness; the reader is, however, directed to their 
work for details. 

Wave hindcasts often suffer from over- and 
underestimation of particular storms. Since the 
occurrence of misestimates is, to a certain extent, 
random, the problem they present cannot be solved by 
simply applying a parametric correction to the data. A 
solution to the problem would be to somehow learn or 
understand how the error process works in a range of 
situations, and then use this knowledge to predict the 
error that would result in partly new situations, which 
consequently would enable an appropriate correction. A 
natural way to learn – to estimate, really – how 
misestimates take place is to gather a large amount      
of observed and predicted data and quantify the 
statistical behaviour of the corresponding errors 
according to the particular context in which they 
occurred. In statistical terms, our problem can thus be 
translated into that of predicting the value of one 
variable (an appropriate correction) conditionally on 
the information provided by other variables (the values 
of certain wind- and wave-related variables 
conditionally upon which the need for the correction 
arose), and hence to the problem of regression. The 
apparently difficult aspect of the proposed solution lies 
in two facts: first, the data we are interested in are 
dependent and non-stationary; secondly, it seems 
difficult to come up with a parametric function which 
would fit and explain the data in all situations (linear 
regression, for instance, would appear as unrealistic at 
the outset). The statistical tool tailored to deal precisely 
with this problem is non-parametric regression 
estimators (see e.g. Caires and Ferreira (2005) and 
references therein).  

The prediction method consists of predicting the 
required correction of an sH  model value, M

sH , at a 
certain time, given m consecutive M

sH  values, in terms 
of the conditional distribution and conditional mean of 
the correction as estimated from a “learning data set”, 
i.e., a data set containing both model data and 
measurements, and hence also corrections. More 
specifically, let us denote by V  the correction to be 
applied to an M

sH  value at a particular time and 
location, and by U a vector of dimension m containing 
the M

sH  value at that time and the m-1 previous M
sH  

values (all at the particular location). In order to predict 
V on the basis of the knowledge that uU =  we need to 
know the conditional mean of V  given uU = , 



)|()( uUVEuR == , 

and the conditional distribution function of V  given 
uU = , 

)|()|( uUvVPuvF =≤= . 

Although these items are unknown, we can estimate 
them using a sample of pairs ),( ii VU , ni ,...,1= , the 
‘learning data set’, where iU  and iV  are analogous to 
the above U  and V  variables. This sample of pairs 
can be obtained from model data and buoy/altimeter 
measurements whenever the two are available at the 
same time and location, so that the corrections are also 
available. 

Write { }mjhuuuhuS jj
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0>h , and let 0>nh  be a given number depending on 
the sample size n. Then the estimator of )(uR  is called 
the empirical regression function and is defined by  
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and the estimator of )|( uvF  is called the empirical 
conditional distribution function and is defined by 
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Here, the notation A1 , where A  is an event, means 1 if 
A  occurs, and 0 otherwise. Thus, each value of both 

)(uRn and )|( uvFn  is an average whose terms include 
only those values of iV  for which ),( ni huSU ∈ . The 
motivation for using these estimators is that they both 
converge (as n grows) in some sense and in certain 
conditions to their theoretical counterparts, )(uR and 

)|( uvF . 

Once )(uRn  is available, one can estimate an unknown 
value of V  on the basis of U  by )(:ˆ URV n= . 
Similarly, using )|( uvFn  one can estimate the 
probability that the unknown value of V  falls in a 
particular interval ),( ba  on the basis of U  by 

)|()|( UaFUbF nn − , and consequently find a 
prediction interval for V  with a specified approximate 
probability of containing it. 

Besides the choice of m, the application of the method 
now outlined requires the specification of nh , which is 
called the smoothing parameter. In theory, nh  should 

tend to 0 as n  tends to infinity, and in most 
applications one may suppose that (see Caires and 
Ferreira (2005)) 

m
n ncnh 121 )log( −= α , 

where c  and α  are constants which, just like m , have 
to be determined empirically. 
 
4.     RESULTS 

 

We started by trying to correct the Cox&Swail data 
using exactly the same settings used to correct the ERA-
40 data: 

• 3=m : U  consists of sequences of 3 model 
values; 

• V  is given by the error between the last value 
in the sequence and the corresponding Topex 
measurement, used to estimate the conditional 
mean and distribution functions; 

• 
21 700log700

3.0
−

= α

m

c , allows two sequences to 

be considered as analogues if the maximum 
absolute difference between them is of at most 
30 cm, when the sample size of possible 
analogues is 700=n ; 

• 2.0=α ; 

• at each location the learning data set is 
composed of sequences that are within a 10º 
circle centred at the location for which the 
values are being corrected. 

The resulting C-Cox&Swail data set compared only 
slightly better with observations than the original 
Cox&Swail data set. We did some sensitivity studies as 
to what the best choice of the learning data set and 
settings would be and found that slightly better results 
could be obtained after making the following 
modifications: 

• Only data from October to March was used to 
correct October to March and only data from 
April to September was used to correct April 
to September. The error characteristics seem 
to have a seasonal behavior. 

• The parameter c  was increased to 

21 700log700
5.0

−
= α

m

c , which being less 

restrictive allows more data to be used in the 
estimation of the corrections. 



We now proceed with the validation of the C-
Cox&Swail data obtained with these improved settings. 

We will validate the reanalysis data sets against Topex 
observations for the North Atlantic and buoy data both 
in the North Atlantic and the North Pacific. The buoy 
data validation also includes the North Pacific because 
the number of NDBC-NOAA buoys in the North 
Atlantic is small. Naturally, the quality of the C-
Cox&Swail data set in the North Pacific cannot be 
compared with that of the Swail&Cox data set since the 
latter is restricted to the North Atlantic. 

The differences between the reanalyses products and 
the observations were qualitatively assessed by looking 
at quantile plots, and quantified through some standard 
statistics such as the bias, ( xy − ), the root-mean-
square error, 

∑ −−= 2)(1
ixiynRmse , 

the scatter-index, 

xxixyiynSI /2)]()[(1∑ −−−−= , 

and the correlation coefficient, 

∑ ∑ −−∑ −−= 2)(2)())(( yiyxixyiyxixρ . 

In all these formulae the ix 's represent the altimeter or 

buoy observations, the iy 's represent the reanalysis 

products, n the number of observations, and a bar over 
a variable represents its average. 

Tables 1 and 2 present statistics of different reanalysis 
products versus Topex measurements in the North 
Atlantic for 1994 and 1997, respectively. 

 

Table 1. Statistics of significant wave height (m) data 
for 1994 from different reanalysis products versus 
Topex measurements in the North Atlantic. The number 
of measurements is 49,478 and their average is 2.44 m. 
 Bias RMSE SI Ρ 
ERA-40   -0.32   0.50   0.16   0.97 
C-ERA40  0.00   0.32   0.13   0.97 
Cox&Swail  0.04   0.47   0.19   0.94 
Swail&Cox  0.03   0.43   0.17   0.95 
C-Cox&Swail   0.04   0.44   0.18   0.94 

 

Figures 1 and 2 contain graphs comparing the 1%-99% 
quantiles of Topex observations for 1994 in the North 
Atlantic against those of the C-Cox&Swail, Cox&Swail 
and Swail&Cox data, and against those of the C-

ERA40, ERA-40, and Swail&Cox data, respectively. 
Figures 3 and 4 present the same information as figures 
1 and 2 but for 1997. 
 

Table 2. Statistics of significant wave height (m) data 
for 1997 from different reanalysis products versus 
Topex measurements in the North Atlantic. The number 
of measurements is 48,054 and their average is 2.45 m. 
 Bias RMSE SI ρ 
ERA-40   -0.22   0.49   0.18   0.96 
C-ERA40  0.00   0.34   0.14   0.97 
Cox&Swail  0.00   0.50   0.20   0.93 
Swail&Cox  -0.03   0.44   0.18   0.95 
C-Cox&Swail   -0.05   0.48   0.19   0.93 
 

 
Figure 1. Graphs comparing the 1%-99% quantiles of 
Topex observations for 1994 in the North Atlantic 
against those of the C-Cox&Swail (*), Cox&Swail (∆) 
and Swail&Cox data sets (О). 
 

 
Figure 2. Graphs comparing the 1%-99% quantiles of 
Topex observations for 1994 in the North Atlantic 
against those of C-ERA40 (*), ERA-40 (∆) and 
Swail&Cox data sets (О). 



 

Table 3. Statistics of significant wave height (m) from different reanalysis products versus buoy measurements in 
different ocean basins; data for 1994. 
Region n x  Reanalysis bias Rmse SI ρ 

4570 2.55 ERA-40 -0.38 0.51 0.13 0.90 
C-ERA40 -0.12  0.34 0.12 0.90 
Cox&Swail -0.46 0.62 0.17 0.81 

Hawaiian Islands 
 

C-Cox&Swail -0.23 0.48 0.16 0.82 
3884 1.09 ERA-40 -0.18 0.33 0.25 0.93 

C-ERA40 0.05 0.26 0.23 0.93 
Cox&Swail 0.32 0.45 0.30 0.89 

Gulf of Mexico 
 

C-Cox&Swail 0.04 0.32 0.29 0.89 
5213 1.87 ERA-40 -0.31 0.52 0.22 0.95 

C-ERA40 -0.04 0.34 0.18 0.95 
Cox&Swail -0.02 0.47 0.25 0.91 
Swail&Cox 0.06 0.35 0.19 0.95 

Northwest Atlantic 
 

C-Cox&Swail -0.09 0.47 0.25 0.90 
3783 2.91 ERA-40 -0.37 0.60 0.16 0.97 

C-ERA40 -0.07 0.40 0.14 0.97 
Cox&Swail 0.20 0.59 0.19 0.94 

Alaska 
 

C-Cox&Swail 0.08 0.52 0.18 0.94 
2910 2.88 ERA-40 -0.38 0.60 0.16 0.96 

C-ERA40 -0.07 0.40 0.14 0.96 
Cox&Swail 0.02 0.54 0.19 0.93 

Northeast Pacific 
 

C-Cox&Swail -0.03 0.52 0.18 0.93 
 
 

Table 4. Statistics of significant wave height (m) from different reanalysis products versus buoy measurements in 
different ocean basins; data for 1997. 
Region n x  Reanalysis bias Rmse SI ρ 

5569 2.37 ERA-40 -0.16 0.35 0.13 0.90 
C-ERA40 -0.08 0.30 0.12 0.91 
Cox&Swail -0.31 0.48 0.15 0.85 

Hawaiian Islands 
 

C-Cox&Swail -0.04 0.37 0.15 0.84 
3671 1.09 ERA-40 -0.09 0.31 0.27 0.92 

C-ERA40 -0.01 0.26 0.24 0.92 
Cox&Swail 0.27 0.41 0.29 0.90 

Gulf of Mexico 
 

C-Cox&Swail -0.01 0.29 0.27 0.91 
4774 1.74 ERA-40 -0.15 0.42 0.23 0.94 

C-ERA40 -0.03 0.35 0.20 0.93 
Cox&Swail -0.01 0.47 0.27 0.88 
SwailCox 0.05 0.37 0.21 0.92 

Northwest Atlantic 
 

C-Cox&Swail -0.05 0.47 0.27 0.88 
3788 2.87 ERA-40 -0.21 0.50 0.16 0.96 

C-ERA40 0.00 0.41 0.14 0.96 
Cox&Swail 0.20 0.65 0.22 0.92 

Alaska 
 

C-Cox&Swail 0.01 0.56 0.20 0.92 
1911 2.89 ERA-40 -0.14 0.45 0.15 0.95 

C-ERA40 0.08 0.42 0.14 0.95 
Cox&Swail 0.19 0.60 0.20 0.92 

Northeast Pacific 
 

C-Cox&Swail 0.09 0.53 0.18 0.92 
 
 



Tables 3 and 4 present statistics of different reanalysis 
products versus buoy measurements in different ocean 
basins for 1994 and 1997, respectively. 

We will not analyse in detail the differences between 
the ERA-40, Cox&Swail and Swail&Cox data sets or 
between the C-ERA40 and the ERA-40 data sets; 
extensive comparisons of these are available in Caires 
et al. (2004) and Caires and Sterl (2005), respectively. 
We will concentrate on the comparisons between the C-
Cox&Swail data set and the other data sets, and on the 
comparison between the C-ERA-40 data set and the 
Cox&Swail and Swail&Cox data sets, since they are 
obtained here for the first time. 

 

 
Fig. 3. Graphs comparing the 1%-99% quantiles of 
Topex observations for 1997 in the North Atlantic 
against those of the C-Cox&Swail (*), Cox&Swail (∆) 
and Swail&Cox data sets (О). 
 

 
Fig. 4. Graphs comparing the 1%-99% quantiles of 
Topex observations for 1994 in the North Atlantic 
against those of the C-ERA40 (*), ERA-40 (∆) and 
Swail&Cox data sets (О). 

The analysis of the above tables and figures leads to the 
following statements: 

• The C-Cox&Swail data set compares better 
with the Topex data than the Cox&Swail data 
set. The improvements are, however, small: a 
decrease of about 3 cm in the root-mean-
square-error and of 0.01 in scatter-index. 

• The Swail&Cox data set compares better with 
the Topex observations than the C-
Cox&Swail data set, although only 
marginally. 

• The C-ERA40 data set compares much better 
with the Topex observations than all the other 
data sets. Its root-mean-square-error is at least 
10 cm lower than that of the others, its 
scatter-index is the lowest, and its correlation 
with the observations is the highest. 

• If we were to rank the different reanalysis 
data sets based on the statistics presented in 
tables 1 and 2, then the order by decreasing 
quality would be: C-ERA-40, Swail&Cox, C-
Cox&Swail and, ex aequo, ERA-40 and 
Cox&Swail. 

• The 1%-99% quantile plots show that the 
non-parametric correction of the Cox&Swail 
data was effective in improving the quantiles 
of the data at least up to the 90% quantile, the 
improvements being greater in 1997 than in 
1994. On the other hand, the quantiles of the 
Cox&Swail data set already compare so well 
with the observations that improvements have 
little impact; clearly, the non-parametric 
correction has much less impact here than in 
the case of the ERA-40 data set. The C-
ERA40 data set is the data set with the 
quantiles closer to the observations. 

• The comparisons with buoy data show that 
the non-parametric correction has almost no 
impact in the Cox&Swail data in the 
Northwest Atlantic buoy locations. The 
impact in the data for the North Pacific buoy 
locations is, however, quite visible, with 
decreases in the root-mean-square-error of 
about 10 cm. The C-ERA-40 is, as in the 
comparisons with Topex data, the one that 
compares better with observations, having the 
lowest root-mean-square error and scatter-
index and the highest correlation with the 
observations. 

 



 
5.     CONCLUSIONS 
 

We have tried to obtain an improved Cox&Swail data 
set by using the non-parametric technique used to 
successfully improve the ERA-40 significant wave 
height data set. The results of the present attempt are, 
however, less far reaching than those of the ERA-40. 

In short, our comparisons show that the Cox&Swail 
data set can be improved non-parametrically, but the 
improved data set was still of lower quality than the 
Swail&Cox data set, especially at the buoy locations. 
The improvements of ERA-40 data obtained by the 
non-parametric correction were much more substantial 
that those obtained for the Cox&Swail data. 

One of the reasons for the success of the non-parametric 
correction of the ERA-40 data was the high correlation 
between the ERA-40 data and the observations. We 
suspect that the correction of the Cox&Swail data set 
was less successful because the correlation between the 
Cox&Swail data and the observations is smaller than in 
the case of ERA-40. The monthly correlation between 
the Cox&Swail data and the Topex observations varies 
in 1994 from 0.81 to 0.95 and in 1997 from 0.86 to 
0.94. For the ERA-40 data the correlations are between 
0.91 and 0.97 in both years. 

The non-parametric correction will not introduce 
missing storms, remove fake features nor displace 
storms, and therefore it is important that even if errors 
are gross that the correlation between the data sets is 
high. This type of errors can, on the other hand, be 
corrected kinematically, and indeed the Swail and Cox 
(2000) kinematically improved winds show a 
correlation with the observations that is up to 0.15 
higher than the one of the NCEP/NCAR reanalysis 
winds (see Caires et al. (2004)); consequently, the 
Swail&Cox data set also correlates better with 
observations than the Cox&Swail data set. 

The results of the non-parametric correction could 
probably be further improved by extending the learning 
data set or by adding the wind speed in the conditional 
setting, but the results will most definitely fall short of 
the quality of the C-ERA-40 data set. 
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