
METHODS TO REDUCE BIASES IN  
WIND SPEEDS FROM SHIPS AND BUOYS 

 
Bridget Thomas1 and Val Swail2 

 
Meteorological Service of Canada 

Climate Research Branch 
 1Dartmouth, N. S. and 2Downsview, Ont. 

1. INTRODUCTION 
The goal of this study is to develop methods and relationships to convert databases of  ship wind speeds to 

be more homogeneous with databases of buoy wind speeds.  Buoy winds have less random observational error than 
ship winds, and are the standard for validation of numerical-model and remotely-sensed marine data.  However the 
period of record is short (a few decades) compared to that of ship observations which go back to earlier centuries.  
In this paper we will describe the adjustment and regression methods and results.  

2. DATA AND INITIAL PROCESSING 
Data from moored Canadian NOMAD buoys were obtained from Canadian Marine Environmental Data 

Service (MEDS).  The database contains hourly reports with fields from all the sensors, including two 
anemometers, reporting 10 minute means and 8 second peak wind speeds.  We analyzed data from 3 NOMAD 
buoys on the west coast of Canada and 6 from the east coast, from 1980 to 1995 (most initially deployed late 
1980s). Gilhousen(1987, G87 hereafter) found that scalar means (reported later in the study period) were about 
8% higher than vector means.  An experimental study on the west coast found a smaller difference, of about 3% on 
average (Axys, 1996).  The operational buoys reported both averages for some months, and our analysis of  that 
data supported Axys’ conclusion (Thomas and Swail, 1999); we therefore used this correction.  Most of the MEDS 
archived meteorological fields were not quality controlled; we attempted to remove all spurious wind speeds.  In 
particular, from 1989 onward, when wind speeds from both anemometers were archived, the wind speed report was 
not used unless both anemometers were functioning and in agreement.  

Ship reports were extracted from the COADS (Comprehensive Ocean Atmosphere Data Set) Release 1a: 
1980-95 (Woodruff et al., 1993), within a radius of approximately 120 km of each buoy location.  Metadata about 
each ship was acquired from yearly electronic files of WMO Publication 47 (WMO 1980, with some corrections 
applied by Kent and Oakley, 1995), and (for Canadian-recruited ships) the Canadian Ship Information System. 
These sources gave the thermometer and anemometer heights needed to adjust measured ship winds for height.  In 
some cases, unavailable anemometer heights were inferred from platform heights.  Typical anemometer heights 
range from 15 to 40 m, with average heights near 30 m. 

Differences in anemometer height are a significant cause of bias, increasing observed wind speeds from 
sources with high anemometers.  Wind speeds were adjusted to a reference level of 10 m, effective neutral, using 
Walmsley’s (1986) method when possible, or a log profile formula if air and sea temperatures weren’t available.  
The log profile assumes neutral atmospheric stability conditions; this assumption will be reasonably good in 
offshore regions.  If we did not have an anemometer height for a ship with measured ship winds, we did not use the 
winds. 

The operational Beaufort equivalent wind scale is meant to give a wind speed equivalent to a 10 m 
effective neutral wind (U10N), so we did not adjust  estimated winds for height.  However, various improved 
equivalent scales have been proposed.  We adjust estimated ship wind speeds using Lindau’s equivalent scale 
(Lindau, 1995, 2000).  We use both the original estimated wind speed (UE) and the estimated, Lindau-adjusted 
speed (UEL) in subsequent regression analyses, since we are interested in assessing the impact of Lindau’s 
equivalent scale on the dataset of estimated ship wind speeds. 

We found pairs of  ship and buoy reports that were close in time and space (one hour or less apart, and 
within 120 km).  We then applied a quality-control process, flagging ship reports with wind speeds differing 
greatly from those of neighbouring ships,  individual ships whose reported wind speeds differed from those of 
neighboring buoys in a less-drastic but inconsistent way (determined by interquartile range of the differences),  
and ships with few reports in the database (N < 15).  Table 1 gives the numbers of pairs for each ship wind type 
(measured and estimated) after the various screening steps have been applied, and the correlation coefficients 



between the paired values.  The table also gives estimates of the observational error variance, which is explained in 
the next section. 

Table 1 Statistics for differences between paired  ship and buoy wind speeds, and observational error 
variance (OEV), for each type of ship wind (UMA, UE, and UEL), by coast: number of pairs;  correlation 
coefficient; mean, standard deviation and variance of difference in ship buoy wind speeds; total OEV for 
ship and buoy wind speeds, Vst  and Vbt ; buoy/ship total OEV ratio,  ct; and inverse of ct.  

Wind East         West         

 N r d  SD  V  Vst Vbt ct  1/ct N r d  SD  V  Vst Vbt ct  1/ct 

UMA 2759 .792 0.81 2.57 6.59 4.5 2.1 0.47 2.1 7607 .778 0.29 2.49 6.22 4.3 2.1 0.4
6 

2.2 

UE 2026 .767 0.70 3.05 9.29 7.2 2.1 0.29 3.4 3065 .748 0.90 3.04 9.25 7.3 2.0 0.2
7 

3.7 

UEL  .764 0.78 2.74 7.50 5.4 2.1 0.39 2.6  .748 0.93 2.74 7.52 5.6 2.0 0.3
5 

2.8 

3. ANALYSIS METHOD 

3.1 Overview 
In order to remove any inhomogeneities remaining after correction for averaging method and 

measurement height, etc., we develop conversion relationships by regressing buoy (BU10N) on ship (SU10N) 
winds in various ways.  The regression equation is then used to convert the ship wind speed to a regressed ship 
wind (RSW).  Each regression method has a specific purpose or application and gives regressed winds with certain 
statistical characteristics.  We will show the impact on the regressed winds of using each method, and assess which 
method is most appropriate for climatological purposes. We analyze 3 different types of ship winds:  measured, 
adjusted (UMA); estimated (UE); and estimated, Lindau-adjusted (UEL).  (All buoy winds are UMA.) 
 We regress buoy on ship data because we want an equation to convert ship winds to be more statistically 
similar to buoy winds.  Conventional linear regression (CON) (ordinary least squares of Y on X, or OLS(Y|X)), is 
used to develop a predictive relationship of the mean Y for a given X.  This would be a true functional relationship 
only if  the independent variable plotted on the x-axis has no observational error.   In our data that is not the case, in 
fact the random observational error of the ship is larger than that of the buoy.  We could regress the ship on buoy 
data, then invert the resulting equation to get a formula to convert ship winds (INV or OLS(X|Y)), but the 
observational error of the buoy winds also cannot be neglected.  These two methods do not treat the data 
symmetrically:  we get different results from each.  To account for the observational errors of both the buoy and 
the ship, we apply an “Errors-in-Variables” (EIV) linear regression method, that uses a ratio of the observational 
error variances to correct the conventional regression parameters.  We also apply a geometric mean (GM) 
regression model. Both the EIV and GM regression models treat each variable symmetrically.  This means they are 
invariant to switching the 2 axes, i.e. we get the same line whether we plot ship on buoy, or plot buoy on ship and 
invert the regression relation.  These methods yield a number of alternative linear conversion relationships for 
each of 3 sets of ship wind speeds: UMA, UE, and UEL  

We found that analyzing each coast separately gives similar regression parameters. However, there are 
some differences from coast to coast, in the frequency distributions of the reported wind speeds, and in the 
estimates of observational error variance, so the data from each coast are analyzed separately.  

We apply the results of some of the different regression methods to convert the ship winds to regressed 
ship winds.  This is necessary when, after adjusting for height and other quantifiable differences, some 
inhomogeneties between the ship and buoy wind data sets still remain.  We can convert the adjusted ship winds 
using the regression relationships to attempt to produce a dataset that is homogeneous with the buoy wind dataset.  
The resulting homogenized datasets could be blended and analysed for temporal trends.  The homogenization 
process should remove a discontinuity with the introduction of buoy winds in last few decades, which would 
otherwise be present in a time series of marine wind speeds.  

We test the effectiveness of the conversion equations at making the ship and buoy data sets homogeneous 
by comparing the converted ship winds to the adjusted buoy winds (BU10N) which we take to be our reference.  



We compare descriptive statistics, specific percentiles, and monthly means and standard deviations of the 
converted wind speed to those of BU10N.  From this, we choose the conversion methods that best suit our 
purpose, for estimated and measured ship wind speeds.  

3.2 “Errors-in-Variables” Linear Regression (EIV)  
In some regressions, the scatter about the line is due primarily to the measurement (observation) process.  

Types of problems where the true points lie on the line are called functional regression models. When the scatter 
due to errors in the measurement process is the same from point to point, this condition is called 
homoscedasticity.  This is the classical “error-in-variables” regression model.  A non-iterative solution for the 
slope of the regression line is possible if this ratio of observational error variance of the dependent variable over 
that of the independent variable, is assumed to be a constant. Lindley(1947) shows the derivation of this method to 
correct the regression formula for the random observational error of both variables, in order to determine a 
functional relationship between two variables.  He discusses the differences between the functional relationship 
and the ordinary regression line. Kent et al. (1998) use this method for a comparison of VOS and ERS-1 
scatterometer winds, which have significantly different random errors, to determine an unbiased regression. The 
method is also described in Isobe et al. (1990). 

Note that if we assume that the independent variable has zero error, the EIV formula gives the same result 
as the OLS(Y|X), and if we assume that the dependent variable has zero error, the EIV formula gives the same 
result as OLS(X|Y).  The two lines, from OLS(Y|X) and OLS(X|Y) form lower and upper bounds, respectively, for 
the slope of the EIV regression line. The EIV regression solution gives the functional relationship between the two 
variables, i.e. the relationship between the true values, rather than the measured values which contain error.  In 
comparison, an OLS regression line based on the measured values will be biased, and will differ from the 
functional line expected between true values, because of the errors in the measurements.  For example, if two 
instruments are measuring the same quantity, but one instrument has a much larger measurement error, the OLS 
regression line will differ from the 1:1 line that would be expected from a regression of the true values.  The EIV 
line should correct for the different errors and give a result close to the 1:1 line, if the two instruments are 
measuring the same quantity and the estimates of random observational error are correct. When measurement 
errors are equal, so that the ratio, c, is equal to one, then the EIV formula reduces to the same formula as the 
orthogonal regression (OR), discussed in the next section. 

3.3 Neutral Regressions 
There are a class of alternatives to OLS(Y|X), applicable when the intrinsic scatter of the data dominates 

any errors arising from the measurement process, or when the measurement error is unknown, or we wish to avoid 
specifying “independent” and “dependent” variables.  We look at some of these methods that treat the variables 
symmetrically.  These are sometimes called neutral regressions, or 2-way regressions.  One method is the 
geometric mean (GM) of the OLS(Y|X) and OLS(X|Y) slopes, also called the reduced major-axis regression.  This 
method minimizes the sum of the area of the rectangles defined by the data points and the nearest point on the line.  
Another model gives a line that minimizes the sum of the squares of the perpendicular distances between the data 
points and the line, called the orthogonal regression (OR) or major-axis regression.  These techniques lead to very 
similar but slightly different regression lines.  The formula for the EIV slope parameter reduces to the formula for 
the OR slope parameter,  when the ratio of measurement error variances is assumed to be 1, i.e. when the 
uncertainties of both sources of data are the same. 

Lindau(1995) used the method of cumulative frequencies to derive an improved Beaufort equivalent 
scale.   In this procedure, he sorted both data sets separately in ascending order.  Values with the same exceedance 
probability in their respective distribution are considered to be equivalent.  The procedure is identical to 
orthogonal regression if the relationship is linear, but allows one to detect non-linear relationships also, as they 
are expected, between Beaufort estimated and measured wind speeds.  Lindau wanted to find the true functional 
relationship between measured and estimated ship winds.  Therefore, he ensured that the observational error 
variances of the two sources of data were equal, by averaging the measured winds over time and the estimated ship 
winds over space. We followed a similar approach, by finding the equation of the line that fits ranked ship and buoy 
wind speeds. However, we did not do any averaging to equalize the random observational error.  For our purpose, as 
we discuss below, it may not be necessary to correct for random observational error. When we order the wind 
speeds from ships and buoy separately, and then match the values quantile for quantile, so that the lowest wind 



speed reported by a buoy is matched by the lowest reported by a ship, and the highest from each is matched, etc., 
the ordered matched data pairs exhibit a strongly linear relationship, as seen in the quantile-quantile scatterplots 
(Fig. 4). We denote the line as QQL. This method is invariant to switching axis. The straight line fit is very close to 
what we get from the GM regression of the paired data (slopes the same to within 1%).  The method of finding the 
linear relationship between ranked bivariate data seems to be equivalent to the geometric mean regression.  This 
follows because the correlation of the ranked data is very close to 1.  The GM  regression slope is equal to the 
OLS regression slope, divided by the correlation coefficient.  The slope of the GM line is simply the ratio of 
sample standard deviations of the Y and X variables. The GM method may be useful if the intent is to produce a 
data base from ship wind speeds that is statistically similar to that of buoy wind speeds. We do not correct for 
measurement error when we use this method, because we are interested in the relationship between the reported 
winds speeds, not the functional relationship between the true winds observed by ships and buoys.  By finding a line 
that matches the ship to the buoy data, quantile by quantile, ship data converted using this relationship will have 
similar statistical characteristics as the buoy wind data. We use RSGM to denote the ship winds converted using 
the GM regression parameters.  Note that we can also fit the ordered data to a non-linear function.  Lindau’s scale 
relating estimated and measured ship wind speeds is non-linear, and a 3rd order polynomial fits it fairly well.  

3.4 Determination of Ship and Buoy Random Observational Error Variance (ROEV) 
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Figure 1 (From TS03) Variograms to determine buoy and ship observational error variance:  a) half 
variance of difference for each buoy-buoy pair, vs separation distance of buoy-buoy pairs, with 2nd order 
polynomial best fit lines;  b) variance of difference for binned differences of east coast measured adjusted 
ship-buoy pairs vs separation distance, also mean of squared differences for binned differences, with 
linear best fit lines. 

The error variance is the square of the uncertainty, or observational error, associated with each wind speed 
report.  We use an average or “bulk” error variance estimate, in order to apply the EIV regression model. Sources 
of observational error include: timing within the hour of the observation; anemometer type, calibration, and 
location (in relation to areas of airflow disturbance over the ship); averaging method or period; effect of wind and 
waves on the ship; errors in calculation of true wind from the relative wind; rounding artifacts (multiples of 2 and 
5, or midpoint of Beaufort intervals); and stage of development of the waves (affecting the observer’s estimate of 
Beaufort equivalent speed). The error or uncertainty of buoy wind speeds comes from similar factors such as the 
anemometer type and height, and calibration and condition of the instrument (which are very susceptible to damage 
from icing, for example), averaging method, buoy motion in waves, the effect of wave sheltering or wave breaking 



on the buoy, etc.  Finally, adjusted wind reports would be affected by differences in adjustment method, and in 
atmospheric stability regime.  In every case, some of these factors would cause systematic differences; others 
would have a random effect only.  

We followed the basic approach used by Lindau (1995) to determine the ROEV of the measured and 
estimated ship wind speeds, except that we worked with variances of differences rather than the mean of squared 
differences, thus preventing systematic differences from being included in the estimates of ROEV. We use an 
estimate of error variance for measured, height-adjusted buoy winds, based on buoy-buoy pairs for which half the 
variance of difference is plotted as a function of distance and interpolated to the origin (see Fig 1a).  We 
determine separate estimates of error variance for UMA, UE, and UEL ship wind speeds in a similar way.  We bin 
the ship and buoy pairs based on separation distance, calculate variance of differences in wind speed for each 
separation bin, and plot the variance as a linear function of the separation distance.  The intercept then gives the 
combined error variance of the ship and buoy (see Fig 1b).  Subtracting the previously determined value for the 
buoy, yields the ship observational error variance.  The method and results are described in more detail in Thomas 
and Swail (2003, TS03 hereafter, in preparation).  Results are compared to those of a study on buoy measurement 
error (G87) and a study in which the semivariogram method described by Lindau is applied to ship and satellite 
wind speed data (Kent et al, 1999).  Table 1 shows the values we use in this study, which apply specifically to the 
quality controlled and adjusted data from which they were derived. 

4. REGRESSION RESULTS 
Table 2 shows linear regression results for UMA, UE, and UEL wind speeds for each coast.  The values a0 

and a1 are the intercept and slope, respectively, of the best fit regression lines.  We can see that for each category 
of wind and coast, the CON line always has the lowest slope, which is always < 1.  The INV line always has the 
steepest slope, which is always > 1. In fact, we get widely different results from the conventional regression 
method, depending if we regress buoy on ship winds (CON) or if we regress ship on buoy winds and then invert 
(INV).  This is due to the large ship observational error variability.  Fig. 2b shows the scatterplot of BU10N on 
SU10N, for east coast measured winds, and the EIV and GM regression lines, as well as the 1:1 line.  The CON and 
INV lines form the upper and lower bounds for the slopes of the regression lines. The regression lines on the plot 
cross each other at the same point, defined by the means of the buoy and ship winds speeds for each dataset. 

When the error variance ratio is < 1 (buoy 
OEV < ship OEV), as in our case, the EIV 
regression line will be closer to the inverse line 
than to the conventional line.  It is bounded by the 
inverse line and the orthogonal regression line 
(almost the same as the GM line).  Thus, when we 
regress buoy on ship winds, accounting for 
observational error through use of the EIV 
regression, it makes a pronounced difference in the 
regression line, compared to that of the 
conventional regression.  The EIV line is close to 
the 1:1 line, particularly for UMA winds.  It is fairly 
close for estimated winds (within 4%), but not so 
close for Lindau-adjusted winds (within about 10%). 
This means that the functional relationship between 
buoy and ship UMA winds is about 1 to 1, i.e.. once 
we adjust for known differences such as 
anemometer height, and adjust the regression for 
random observational error, we find that the ships 
and buoys are measuring approximately the same 

wind.  
Another way to look at this data is using box plots, where the data are binned in different wind speed 

intervals, as described in Tolman (1998, hereafter T98), and the means or medians for each bin are plotted. The 
median buoy winds for each ship wind speed bin do follow a linear relationship (not shown).  As with the scatter 
plots, the regression results of the mean or medians of the bins depend on whether buoy winds are binned on ship 

Table 2 Regression coefficients for best fit lines for 
paired ship and buoy wind speeds, for each type of 
ship wind (UMA, UE, and UEL). a0 is intercept, a1 is 
slope.   

Wind Method East  West  
  a0 a1 a0 a1 
UMA CON 1.504 .731 2.080 .729 
 INV -2.222 1.164 -2.082 1.205 
 EIV -.765 .994 -.482 1.022 
 GM -.143 .922 .259 .937 
UE CON 2.368 .648 2.436 .633 
 INV -1.659 1.102 -2.117 1.130 
 EIV -.371 .957 -.719 .977 
 GM .620 .845 .487 .846 
UEL CON 1.580 .735 1.626 .721 
 INV -3.091 1.260 -3.591 1.290 
 EIV -1.563 1.088 -1.987 1.115 
 GM -.443 .962 -.606 .965 



winds or vice versa.  However, the slope of the regression line for the medians is more sensitive to anomalous high 
wind speeds.  The binned analysis must also be corrected for non-zero observational error variance of the 
independent variable (T98).  

The geometric mean regression parameters are given in Table 2.  The parameters for the straight line fit to 
the Q-Q scatterplot of ranked data are the same to within one percent.  The GM regression line is midway between 
that for the CON and INV lines, as shown in Fig. 2b, and the result is symmetric.  The lines are much closer to the 
1:1 lines than either the CON and INV lines, particularly for UEL winds.  The slope is about 0.92 for UMA winds, 
0.85 for UE winds, and 0.96 for UEL ship winds (Fig. 3b).   If we compare to the corresponding  figures of 
unadjusted measured wind speeds (e.g. Fig 2c and 2d) for west coast measured winds, we see the height adjustment 
has made quite a difference: the slope of the regression line has increased nearly 25%.  As winds increase, SU10N 
becomes gradually stronger than BU10N. The difference is about 2 m/s for BU10N of 16 m/s. 
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Figure 2 Scatterplots for buoy on measured ship wind speeds, with 1:1 and neutral regression lines a) 
east coast original, b) east coast BU10N on SU10N also with  inverse, EIV, and conventional regression 
lines, c) west coast original, d) west coast BU10N on SU10N. 

In the case of east coast UMA winds, the Q-Q plot, Fig. 4a, reveals a fairly linear relationship for most of 
the dataset of BU10N and SU10N, however at higher winds speeds (SU10N>18 m/s, BU10N>16 m/s i.e. 
approximately gale force and stronger) the points are slightly off the straight line.  This suggests some non-linear 
effects, causing the strongest SU10N winds to become relatively stronger than the strongest BU10N winds, 
compared to the linear relationship established for lighter winds.  The difference between these points and the 
QQL line is fairly slight however, only 1-2 m/s. Not shown are the Q-Q scatter plots for west coast UMA winds, or 
for the UE or UEL winds.  The points on the Q-Q scatter plot for west coast UMA winds look consistently linear, 
with a slope very close to that for the east coast.  The Q-Q scatter plots for estimated winds on both coast fit a 
straight line well (Fig. 4c for east coast), although again there appear to be some nonlinear effects at high wind 
speeds.  A 2nd or 3 rd order polynomial  fits this slight curve in the line.  The corresponding plots for UEL winds 
(see Fig. 4d for east coast)are fit best by a straight line. Lindau’s Beaufort equivalent scale gives a non-linear 
transformation, that removes the non-linear component from the estimated winds. 
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Figure 3 Scatterplots for buoy on estimated ship wind speeds, with 1:1 and neutral regression lines a) 
east coast original b) east coast BU10N on UEL, c) west coast original, d) west coast BU10N on UEL. 

5. COMPARISON OF  ORIGINAL, ADJUSTED, AND CONVERTED SHIP AND BUOY WIND SPEEDS 
We can assess the impact of the adjustments on the datasets by looking at the change in the frequency 
distributions. Fig. 5 shows frequency distributions for east coast measured, adjusted and converted winds.  The 
frequency distributions are fitted to the Weibull distribution, which is preferred for wind speeds because it fits the 
extremes better (Bauer, 1996).  However, it seems a little high on the shoulder of the distribution (10-15 m s-1). 
The Gamma distribution (not shown) seems to fit the data more closely in this region, but it is too high for the 
extremes. 

We can see from Fig. 5a to 5b the impact of the height adjustment.  Fig 5a shows that the distribution of  
original ship winds is more skewed and is shifted to higher values, compared to original buoy winds. Fig 5b shows 
that the frequency distributions of the height adjusted (and buoy corrected for averaging method) values are much 



closer.  The adjusted ship and buoy wind speed distributions on the west coast show an even stronger agreement 
than on the east coast.  For both coasts, ship winds still show a tendency for stronger winds to be slightly more 
frequent.  On the east coast, ship winds above about 16 m s-1 are twice as frequent as buoy winds. The difference is 
less on the  
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Figure 4 Scatterplots for east coast measured (top) and estimated (bottom) ship and buoy winds a)  (Q-Q) 
scatterplot of BU10N on SU10N measured, with 1:1 line, and linear and 2nd order polynomial regression 
lines, b) scatterplot of BU10N on RSGM, with QQL regression line, c) Q-Q scatterplot of BU10N on 
SU10N (original estimated), with 1:1 line, and linear and 2nd and 3rd order polynomial regression lines, 
and d) Q-Q scatterplot of BU10N on UEL winds, with 1:1 and linear regression line. 

west coast.  For estimated winds, not shown, Lindau’s adjustment brings the distributions closer together, 
including in the highest winds speeds.  Some difference remains; it seems to be slightly greater on the west coast. 
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Figure 5  Frequency distributions of east coast measured paired ship and buoy wind speeds, fitted to 
Weibull distribution a) original buoy and ship b) BU10N and SU10N, c)-f) BU10N and regressed SU10N 
winds, converted using: c) geometric-mean, d) conventional, e) inverse, and f) EIV regression equations. 

Comparison of the frequency distributions of  regressed ship winds, to BU10N winds, reveals the effects 
of different regression equations.  The CON regression equation  reduces the spread of the ship winds, so that 
RSCON winds are stronger than BU10N in lighter winds, and weaker than BU10N in stronger winds (see Fig. 5d).  
This is 



consistent with the meaning of the conventional regression that gives a prediction for mean values for any given 
range of wind speed.  The INV regression has the opposite effect.  It increases the spread of the ship winds 
(compared to SU10N), so that RSINV winds are relatively greater for strong BU10N, than even the SU10N winds 
were (see Fig. 5e).  Both the EIV and GM conversions give results that are fairly close to that of BU10N (see Fig. 
5f and 5c), with RSGM showing the strongest match (slight differences remain at high winds) (see Fig. 5c).   
Similar patterns occur in the distributions for UE and UEL winds, and for the west coast.  
 

We calculated various statistical summaries for the winds, including sextiles, quartiles, and extreme 
percentiles.  Ultimately we want to be able to compare our revised statistics (using the converted ship winds) to 
existing climatological summaries of marine wind data.  Figure 6 shows the difference in percentiles between that 
of a particular ship wind type and that of BU10N, plotted as a function of BU10N for west coast measured (Fig. 
6a) and east coast estimated (Fig. 6b).  The percentiles for BU10N are used as the standard. One remarkable 
feature of these graphs is how much of the full range of wind speeds is higher than the 95th percentile of adjusted 
buoy winds.  This is the range from near gale force and higher.  The difference in percentiles gets increasingly 
large for unadjusted ship winds, with increasing BU10N.  For example 99.9 th percentile wind speed for BU10N is 
about 22 m/s, compared to the 99.9 th percentile wind speed for original measured ship winds of about 26 m/s.  The 
height adjustment, to SU10N, drops the differences in percentiles substantially, from about 3 m/s by the 95th 
percentile, to 1 m/s (BU10N 15 m/s).  For increasing BU10N, the difference in percentiles with RSCON becomes 
increasingly negative.   The percentiles for RSGM (UMA) are fairly similar to those of BU10N, with differences 
in percentiles of  less than 1 m/s, for the full range of wind speeds of the dataset. The Lindau-scale adjustment for 
estimated winds, drops the 99th percentile from 4 m/s greater than BU10N, to about 2 m/s.  The UELRSGM 
percentiles show good agreement with the BU10N percentiles, with differences of less than 1 m/s for the full 
range of values. 

We can look at monthly statistics as way to assess the ability of the regression method to give converted 
ship wind data sets that have a similar amount of seasonal variability as buoy data.  This problem is discussed in 
detail by Lindau (2000).  Fig 7 shows 75th percentiles of  measured winds on the west coast, for each month. The 
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Figure 6 Differences in percentiles (ship - buoy) vs bu10n percentiles, for a) west coast measured, 
b) east coast estimated.  See text for description of original and adjusted and converted ship winds. 



annual cycle has a minimum in July and a maximum in January.  The unadjusted ship values are much higher than all 
of the converted values and BU10N.  The tendency of the CON regression to over-reduce the stronger values 
shows up particularly over the winter months, where the 75th percentiles of RSCON are lower than the other winds 
values, just as described by Lindau. The seasonal variation in the range of wind speeds is reduced too much by the 
CON conversion.  We can see that the GM and EIV conversion preserved the same seasonal variation as the 
BU10N winds, since those are fairly close. The differences in the methods show up more clearly in the higher 
percentiles during the winter months, and for the lower percentiles in the summer months. The INV conversion 
increases 
the spread of the wind speed distribution in both directions.  As a result, the RSINV 25th percentile wind speeds 
(not shown) are lower than all the other winds, particularly in the summer months (the lowest values).  All the 
methods give fairly similar result for mean monthly conditions, especially months that are not at either end of the 
annual cycle in wind speed strengths.  East coast monthly statistics (not shown) reveal a seasonal cycle with a more 

extended period of lighter monthly mean 
winds during the summer, then a more 
abrupt increase in fall.  Monthly statistics 
for estimated winds (not shown) reveal 
that Lindau’s adjustment actually 
increases the monthly mean summer 
winds slightly, compared to the original 
estimated winds, and reduces the winter 
monthly means very slightly.  The 
regressed winds have fairly similar 
monthly means, so the choice of 
regression method is less important than 
for the monthly extremes (high and low). 
The standard deviations of the monthly 
means show some pronounced 
differences in the impact of the different 
regressions.  For both coasts, the CON 
conversion reduces the variance, during 
every month, compared to the others, 
while the INV conversion increases the 

variance.  The EIV conversion also increases the variation in the wind speeds to more than what we see in the 
height adjusted ship winds.  The GM conversion gives a variance in the regressed ship winds very similar to that of 
the adjusted buoy winds. 

6. DISCUSSION 
The height adjustment of both measured ship and buoy winds makes a large contribution to reducing the 

differences in the monthly summary statistics.  
The EIV model is a simplification of the problem of random observational error, with the assumption that 

the ratio of random errors is a constant.  More sophisticated regression models to deal with observational error 
that is a function of the variable itself, are described in Feigelson and Babu (1992) and in Ripley and Thompson 
(1986).  TS03 study the dependence of measurement error variance of wind speeds measured (or estimated) by 
ships and buoys.  There does appear to be some dependence of the observational error variance on the wind speed, 
however more data and analysis is required to quantify this in each case.  Separate “bulk” or average measurement 
error variances, determined for buoy and measured and estimated ship wind speeds, are used here in this study with 
the EIV regression model.  In order to use the EIV method, we have to assume that the ratio of observational error 
variances of each source is a constant.  This may be true, even if the measurement error variance depends on the 
magnitude of the wind speed, but the analysis in TS03 did not have enough information to show this. 

There are small differences in the slopes of the regression lines from coast to coast.  The difference is 
about 2 to 4% for measured winds, only 1% for estimated, with the slopes for the west coast being slightly 
steeper. There seems to be slightly less bias (west coast ship UMA closer to BU10N). The different tracks and  
stages of  development of the storms on each coast, giving different wind and wave climates, may be a factor.  
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Figure 7 Monthly 75th percentiles (m/s) for west coast measured 
ship winds, compared to those for BU10N winds, plotted by 
month. 



Also, ship observing practices and vessel characteristics may differ enough to make a difference.  The majority of 
west coast paired ship reports are from tankers, whereas on the east coast more paired reports are from Coast 
Guard and container ships.  The log profile formula was used to adjust a higher proportion of west coast measured 
winds, which may have slightly over-reduced the winds in unstable situations.  Also, we estimated the anemometer 
height from the platform height for more west coast ships. Regressions of Q-Q scatterplots also allow non-linear 
fits to the ranked data.  There is slightly better agreement between the BU10N data set and east coast UMA ship 
winds converted using a non-linear regression; the non-linear effects appear at high wind speeds; the effect is not 
apparent with this dataset of west coast UMA winds.  Similarly, it was necessary to use a nonlinear fit to the ranked 
data, to get regressed estimated winds that agreed as well with BU10N winds, as the UEL winds regressed using 
linear fit to ranked estimated, Lindau-adjusted data.  The Lindau scale is non-linear, and removes the slight non-
linearity between buoy and ship winds at high wind speeds.  It may be possible to develop some further adjustments 
to either the buoy or ship winds in these extreme conditions, however these may have little effect on the overall 
linear relationship between buoy and ship winds determined in this study.  

7. CONCLUSIONS 
The most important step to make ship and buoy data sets more homogeneous is to adjust measured ship 

and buoy wind speeds from anemometer height to a common reference level of 10 m.  Some inhomogeneities do 
remain in the buoy and ship data sets, even after making corrections for buoy averaging method and adjusting 
measured winds to a common reference height.  To remove remaining inhomogeneities, the ship data can be 
converted to be more similar to buoy data statistically, by using results of a regression between the ship and buoy 
data.  The best method seems to be to perform a geometric mean regression on the data and use the resulting linear 
equation on the ship winds.  This is effectively a scaling of the ship winds by the ratio of standard deviations of the 
buoy over that of ship winds.  This conversion gave similar frequency distributions, and annual and monthly 
statistics of converted ship and buoy winds.  Some slight differences still remain between the buoy and regressed 
ship UMA winds above about 16 m/s. Estimated winds can be adjusted either by using the geometric mean 
regression directly, or adjusting first with Lindau’s equivalent scale, then using the geometric mean regression.  
Use of Lindau’s scale first, seems to remove some slightly nonlinear behaviour between buoy and ship winds at 
high speeds.  
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