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1. INTRODUCTION 
 

 Gravity waves in water surface are characterized by a small steepness value. It makes possible to apply the weak-
turbulence approach in order to find out the problem solution with the help of kinetic equation for energy spectrum. 
This equation was formulated by K.Hasselmann (1962,1963) and V.Zakharov (1968). In terms of wave action 
spectrum the equation is as follows: 
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where  )( ii NN k=  is a spectral density of wave action; )( 3k,k,kk, 21T  is a kernel function of non-linear wave 

interaction; )(kδ  and  )(ωδ  are the delta-functions describing a resonance interaction between four wave 
components:  
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For gravity waves gkk =ω )( , the value 3
3 ~)( kT k,k,kk, 21  is a homogenous function of the third order. An 

explicit expression for )( 3k,k,kk, 21T  can be found out in original papers (Hasselmann 1962, 1963;  Webb 1978;  

Zakharov 1999).  
The equation (1) has been a subject of numerical modeling for almost three decades (Webb 1978, K.Hasselmann 
1985; Resio and Perrie 1991; Polnikov 1993; Komen et al., 1994; Komatsu and Masuda 1996, Zakharov 1999, 
Lavrenov 1998, 2001 etc.). However, some basic properties of this equation are not clarified till now.  
Usually the equation (1) is considered to preserve standard constants of motion – wave action, energy and 
momentum:  
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Actually, only N is a real constant of motion. The energy  E  and the momentum K  are only “formal” integral of 
motion, “leaking” in the area of very large wave numbers. The high frequency truncation of the Hasselmann equation 
leads to a leakage of the wave energy and momentum to a high frequency range, whereas the wave action flux is 
mainly directed to a low frequency range.  It can be presented  as follows:  
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where M,P  are fluxes of energy and momentum in k  -space directed to high frequency area.  

Preservation of energy and momentum fluxes to high wave numbers is due to formation of weak turbulent 
Kolmogorov spectra. The main theoretical point of the kinetic equation (1) is a description of the stationary equation 
solution of :  

0≡nlG                                                                                                              (5)  

 
The simplest Kolmogorov weak-turbulent stationary solution of the equation (1) was obtained in 1966 (Zakharov and 
Filonenko, 1966):  
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where ( )ωS  is the energy spectrum defined by the relation:  
 

βωβωωωβωω ddN
g

dNkddS ),(
2

)()()( 2== kk                                       (7) 

In  general terms the Kolmogorov spectra are anisotropic:  
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where  ),( βξFF =  is a  function of two variables. 

A solution (9) averaged over the angles is very close to energy frequency spectra, obtained in many laboratory and 
field experiments (Toba 1972;  Donelan et al. 1985). 
Now, a question arises, how can t he exact Kolmogorov solution of the stationary equation (5) approximate solutions 
of the nonstationary equation (1), especially in cases of applying forcing and damping sources? It should be noted 
that for the first time an attempt to give an answer to this question is undertaken in paper (Komen, Hasselmann and 
Hasselmann,1984). They show that even in the presence of input and dissipation there is the spectrum solution 

41~ ωS . The nonlinear flux is found out to be generally rather strong, so that relatively small deviations from the 

solution 41~ ωS are sufficient to generate divergent fluxes, which can balance nonzero input and dissipation 
source function in the cascade region (Komen et al.,1994). Unfortunately, at that time it was difficult to get an exact 
estimation of basic parameters of problem solution.. A stationary solution obtained by solving nonstationary equation 



 

 

 

 

(1) should be developed with reliable accuracy. That is why it is necessary to use sufficiently accurate and fast 
numerical algorithm, not available at that time.  
It should be noted that a full-scale experiment on numerical simulation of the equation (1) is performed recently 
(Pushkarev et al., 2002). The approach, based on another numerical algorithm (Webb 1978; Resio&Perrie, 1991), 
existing for more than two decades, is used. As this problem seems to be rather complicated for numerical 
simulations and the results are obtained for the first time, there appears a necessity to produce independent 
estimations in order to verify the above-mentioned results with the help of the another  algorithm.  
This is a motivation for writing present paper. Numerical results of the equation (1) solution taking into account 
wave energy forcing and damping are obtained in this paper with the help of the numerical algorithm elaborated 
recently by one of the authors (Lavrenov 1998, 2001). The algorithm is based on numerical methods of highest 
precision. It is of high accuracy and calculation speed. 

 

2. PROBLEM FORMULATION  
 
The equation of spectral wave action evolution can be written as: 
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where nlG  is the non-linear energy transfer function (1);  γ  is a damping increment depending on the frequency   

ω   as follows : 
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where 2,1C  are positive constants.  

 
The value F  is an external active force: NfF = . The function  ),( βω= ff  is a value not equal to zero 

within the frequency range: fωωω <<min . It is equal to the following angular function:  
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where Q  is a normalizing function, providing the same integral value for the various parameters n  and  A:  
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where 3C  is a constant. 

So, a problem is posed in such a way that the whole frequency range is divided into sub-ranges with 

different energy sources. The low-frequency damping domain is located in the range  ( minωω < ) in order to 

stabilize fluxes directed into the low frequency range. The energy pumping domain is located within the range  

( fωωω <<min ).  One of the most interesting frequency ranges is the domain ( pf ωωω << ) without any 

damping or pumping, i.e. it is the so-called “transparency window”, where the spectrum is formed only by non-linear 



 

 

 

 

energy transfer. The Kolmogorov constants should be defined using numerical results in this range. The high 

frequency damping is located in the domain ( pωω > ). Values of the frequencies  pf ωωω ,;min  
are defined in 

such a way that the appropriate frequency ranges include sufficient number of  grid points to obtain  reliable integral 
estimations defined by spectrum values within the corresponding frequency ranges. The following values are used: 

;5.0min =ω
 . 

5.6,0.1 =ω=ω pf   

 In order to comply with the requirements of the kinetic equation (1) application, the coefficient 3C  in (12) is defined 

as 001.03 =C  satisfying the conditions of smallness of the growth rate with respect to the corresponding 

frequency: ω<<f .  The coefficients 2,1C  as well as the appropriate frequencies pf ωωω ,;min  
are defined 

experimentally. The conditions of  effectiveness of fluxes absorption and minimization of the pumping and damping 
intervals with respect to appropriate frequency are used. It should be noted that exact values of the constants 2,1C  

(satisfying the conditions 0.12,1 <C ) are not so principal to obtain a qualitative solution within the range 

pωωω <<min . The values 2,1C  are defined in such a way that the energy, wave action and momentum fluxes 

are absorbed by dissipation within appropriate frequency ranges and by numerical accuracy of fluxes estimations.  
Numerical results are estimated in 96 directions and 50 frequencies. Such a detailed angular resolution is used for 
obtaining an accurate estimation for narrow angular distributions of external force approximation (12) considered in 
paper. In this case the angular increment is equal to 065.02 ≈πβ∆ , being the same order of frequency increment: 

068.0≈ωω∆ . Such discritization is optimal for numerical integration in general case, when solution is not 

known before hand (Lavrenov, 1998). 
As the solution is to be obtained for a large time scale (up to 100000 seconds), an optimal numerical algorithm of 
non-linear energy transfer computation is used (Lavrenov 1998, 2001). 
 
 
3. NUMERICAL RESULTS  
 
3.1 Spectrum evolution   
 
Now, the numerical results for the isotropic case with 0.0=n  and A=1.0 should be considered. The frequency 
spectrum can be defined as a function of wave action as  follows:  
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The spectrum (13) for the following time steps: 100, 300, 500, 1000, 3000, 5000, 10000, 30000 and 50000 sec., 
respectively, is shown in the logarithmic scale (Fig 1).  
Two different stages can be defined in the wave spectrum evolution. On the first stage the spectrum growth is 

observed within the range of the external force impact: 0.15.0 <<ω . The spectrum is quickly increased in more 
than 6 orders. Duration of this time interval is estimated as: 10000≈t sec. The spectrum becomes almost stationary 
at 30000≥t  sec. Its values coincide exactly with the spectrum at 50000≈t sec. The initial and final stages of 
spectral evolution are presented in Fig. 1a. Within the range 0.88.0 << ω , the stationary spectrum is very close to 
the Zakharov- Filonenko one:  
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Spectra evolution within the intermediate time interval 1500011000 << t  sec. is presented in Fig.1b. 
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Fig. 1 
 Frequency spectrum evolution within time intervals:  

a) 50000100 <≤ t sec ;  b) sec1500011000 <≤ t ; (----) – approximation 0.4−ω≈S  
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3.2 Estimation of spectral front propagation 
 
In wave spectrum the evolution of two effects can be observed: a relatively slow growth of spectra in the forcing 
range and a fast “front propagation” to area of high wave numbers. It is a self-accelerating process. In paper (Komen 
et al., 1994), this concept is used to explain high frequency spectrum formation and the migration of the spectral peak  
towards lower frequencies.  
A formation of the stationary spectra occures within a finite time interval. At the same time the wave energy 
propagation to high frequency range is observed. The speed of this propagation can be estimated as a shift of the 
spectral frequency front into high wave numbers (Fig. 2). The spectral frequency front is defined as a high frequency 
(“cut-off frequency”), with spectral density value being one order smaller in comparison with the limited spectrum 

solution for a given frequency within the range pf ωωω << . The same effect is described in paper (Donelan et 

al., 1985). 
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Fig.2 

Propagation of spectral frequency front  frontω    into high frequency range 

1 - data approximation (16), 2 – numerical data;   
 

According to theoretical estimations (Zakharov et. al, 1992), the front propagation is approximated using a self-
similar solution of the equation (1): 
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Hence, the “cut-off frequency” is increased  explosively: 
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Numerical estimations obtained in our experiment are in agreement with these theoretical results (Fig.2). A self-
similar front propagating solution can be explained as a result of energy diffusion in frequency space in order to 
reach a system stable state.   

 
  

 4. ESTIMATION OF KOLMOGOROV’S CONSTANTS  
 
4.1 Definition of Komlogorov’s constants  
According to the weak turbulence theory the general Kolmogorov spectrum is defined by fluxes of the wave energy  
P , wave action Q and momentum  M (Zakharov et al., 1992). The spectrum is assumed to be symmetrical with 
respect to the reflection ββ −→ .  In a general case, the spectrum is as follows: 
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In this paper only a case with no wave action flux at infinity: 0=Q  is considered. A similar solution was obtained 
analytically (Zakharov and Zaslavskii, 1982) for the infinite frequency interval, when energy pumping was located in 
the low frequency range and energy damping in the high frequency one. 

For the large value  ω ,  the  function  ),( βξF   can be expanded  into the Taylor series for small PMg ωξ = :  
 

βααβξ cos),( 10 +≈F                                                                                    (18) 

 
For spectrum ),( βωS ,  it can be presented as follows:  
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where 0α  and 1α  are the first and the second Kolmogorov constants, which are coefficients of the spectral density 

expansion:  

ββωω
π

=α ∫
π

π−

dS
Pg

),(
2
1

3134

4

0 ;                                                                        (20) 

 

βββω
ω

π
=α ∫

π

π−

dS
Mg

P
)cos(),(

1
37

325

1                                                                    (21) 

 
The energy flux  P , directed into the high frequency range, is estimated as: 
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The momentum flux is estimated similarly:  
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4.2. Isotropic case   
 

The value   0α  can be determined in isotropic case as follows: 
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According to the weak turbulence theory, the value 0α  is a constant, not depending on ω.  As our estimates show: 

0.0330.3030 ±=α    for time moment   t>20000 sec.  

 
4.3. Non-isotropic case  
 
Similar numerical simulations of the non-linear spectrum evolution are fulfilled for non-isotropic source function 
generating wave energy (12) with different values of the parameters n and A.  
The time evolution of wave integral parameters (i.e. total energy, wave action and momentum) is shown in Fig.3. A 
full stabilization of these parameters is observed at ≥t  10000 sec.  
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Fig.3  
Time evolution of : 1- total energy, 2- wave action; 3 - momentum 

 
 

Estimation results of the limited spectrum at  t=20000 sec. for the most narrow angular distribution are presented in 
Fig.4 (frequency spectrum) and Fig.5 (frequency-angular spectrum).  It should be pointed out that the main features 
of the frequency spectrum are nearly the same as in the isotropic case.  

 

 
2

 

t(sec) 



 

 

 

 

1 1 0

Frequ ency (rad/s)

1e-005

0.0001

0.001

0.01

0.1

1

1 0

100

1000

S

1  

2  

 
                    

 Fig. 4 

Limited frequency spectrum in non-isotropic case , 1 – numerical data; 2- approximation 0.4−ω≈S . 
 

-5.00 -4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00 5.00

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

5.00

0.00E+000

3.36E-002

6.71E-002

1.34E-001

2.69E-001

5.37E-001

1.07E+000

2.15E+000

4.30E+000

8.59E+000

1.72E+001

 
 

Fig.5 
Limited frequency-angular spectrum  
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As for non-isotropic cases there is an additional possibility to estimate not only the first Kolmogorov constant, but 
also the second one using  (21). The corresponding results are presented in Table 1 
An angular spectrum width D  (Fig.7) can be determined as a proportion of the frequency-angular spectrum value at 
the main direction to the frequency spectrum as follows:   
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     Function )(ωD  

1- numerical results; 2 - local approximation: 4.2235.0 −ω⋅≈D  
 

The function  D  is shown in Fig. 6. Its maximum value is achieved at the frequencies  6.05.0 ÷=ω rad/s. After 

that it is quickly reduced as soon as the frequency is increased, showing that the function of angular energy 
distribution becomes wider.  
Final estimation results of the Kolmogorov constants for different values of external angular functions are presented 
in Table 1. As it is seen the estimations of the first and the second constants are varied weakly depending on the 
external angular function distribution. 

 
ESTIMATION OF KOLMOGOROV CONSTANTS FOR DIFFERENT ANGULAR DISTRIBUTION FUNCT IONS 

TABLE1 
Angular function distribution 
of energy generating  force 

0α  1α  

Isotropic  0.303 ± 0.033  

cos ( /2)β  0.308 ± 0.020 0.218 ± 0.015 

2cos ( )β  0.324 ± 0.021 0.239 ± 0.023 

4cos ( )β  0.311 ± 0.023  0.242 ± 0.034 

ω,  rad/s  

           D 



 

 

 

 

 
It should be noted that the results presented in Table 1 are in general agreement with (Pushkarev et al., 2002), in 

which the following estimations are obtained: for isotropic case: 45.035.0 0 << α  and for non-isotropic one: 

37.033.0 0 << α   and 27.018.0 1 <<α .  

The discrepancies between the above mentioned results and ours can be explained as follows. In (Pushkarev et al., 

2002) there are some differences between the values 0α  for isotropic and non-isotropic cases, whereas the values 

0α  should be constant according to its definition. It should be noted that these estimations are obtained within a 

more wider confidence interval and only for two angular distributions. In our computation numerical simulations for 
four angular distributions are produced: from isotropic to a very narrow one typical for wind wave generation. 
Another reason of the discrepancies can be explained by the fact that there is no evidence that fully stabilized 
numerical solution is obtained. (Pushkarev et al., 2001). Moreover, our estimations can be considered to be more 
accurate due to the fact that a more precise numerical algorithm and more fine angular resolution are used.     

5. COMPARISON WITH TOBA SPECTRUM  
 
Toba (1973) made careful measurements of the spectrum tale and found out that the following  approximation 
describes a spectrum: 

4
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where 
2102.6 −⋅=δ , *U is a friction velocity . 

It is interesting to make a comparison between the Toba spectrum and the Kolmogorov one (17) or (19). In order to 
do it the wave energy flux (22) should be defined. It includes the value of wave energy dissipation in a high 
frequency range, which is unknown.  It can be estimated, supposing that the wind input energy flux is expended to 
support the high frequency energy flux directed to a high frequency range of wave spectrum:  
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The wind wave input energy increment  f  can be estimated using  a traditional approximation [Kome n et al., 1994] . 
It is defined as follows:  
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where aρ and wρ  is a density of air and water, correspondingly.  
The angular-frequency spectrum approximation should be substituted into  (22)  in order to define the energy flux 
(22). Unfortunately an angular distribution of the Toba spectrum is unknown. Nevertheless it can be suggested that it 
is rather wide in high frequency range.  The following estimation can be obtained for the isotropic frequency 
dependent spectrum:  
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Thus, the energy flux can be estimated as:                      
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Using (19) and (25), the  first Kolmogorov constant can be estimated as follows:  
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Comparing this value with that obtained with the help of d irect numerical simulations (see Tabl. 1) a conclusion can 
be made that they are in a good agreement.. 
 
CONCLUSIONS 
 
Direct numerical simulations of the Hasselmann kinetic equation for gravity waves in water surface confirms basic 
predictions of the weak-turbulent theory. The kinetic equation for surface gravity waves is investigated numerically 
taking into account an external generating force and dissipation. An efficient numerical algorithm for simulating non-
linear energy transfer is used to solve the problem. 
Three stages of wave development are revealed: unstable wave energy growth within a range of external force 
impact, fast energy spectrum tail formation in high frequency range and establishment of a steady state spectrum. In 
both isotropic and non-isotropic cases the spectra are found out to be close to the  Zakharov-Filonenko spectrum 

4−ω  in the universal range. Reliable estimations of the Kolmogorov constants are found out. Formation of this 
asymptotic spectrum happens explosively. Accurate estimations of the first and second Kolmogorov constants are 
obtained.  
A good agreement between the Toba experimental data and our results obtained with the help of direct numerical 
simulation is observed. 
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