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1.  INTRODUCTION 
An important parameter regarding structural safety is the height from the still water level (accounting for tide 
and storm surge) to the lowest deck level of the platform. Standard practise, at least for structures at the 
Norwegian Continental Shelf, is to require that this height is larger than the wave crest height occurring with an 
annual probability of occurrence of 10-4 after accounting properly for the increase in crest height due to wave-
structure interaction. For floating structures this requirement may be rather difficult (or, rather, very costly) to 
meet and for such cases the requirement is to design the structure such that it can take the impact forces caused 
by these events with merely local damage, i.e. the impact event is not to escalate into a catastrophic failure. For 
floating structures it is of course the relative wave motion that is of concern, but the methodology used herein 
for the undis turbed wave crests may also be applied for the relative wave motion.  
 
In harsh weather areas, the 10-4-probability (1) undisturbed crest height may well be in the order of 20-25m. The 
water level variations due to tide and surge may in open, deep water areas typically be in the order of +/- 2m, 
i.e. the height level reached by the wave crest is completely dominated by the wave crest height itself. 
Depending on the transparency of the structure under consideration, wave-structure interactions may also add to 
the air gap requirement. For a transparent jacket structure, the crest height amplification may be rather small, 
while for a gravity based concrete structure the crest height increase may be larger – say up to 20-30% of the 
incoming crest height. Irrespective of structure, however, the most important quantity to estimate correctly, will 
be the incoming undisturbed wave crest height. Finally, the effects of tide and surge can be added by sufficient 
accuracy by means of rather simple statistical methods. If important, model testing may be required to address 
the effects of sea structure interactions. Based on the above discussion, we will in this paper focus on predicting 
estimates for the 10-4-probability crest height for a Northern North Sea location. This  will be done using various 
methods in order to indicate possible inherent differences between the methods. 
 
2. TARGET QUANTITIES 
Within offshore rules, the characteristic response, xc, to be used in various limit state checks is usually chosen 
as the response value corresponding to an annual exceedance probability of q, where q=10-2 for the ultimate 
limit state and q=10-4 for the accidental limit state. An estimated extreme response value, xe may be exceeded in 
a broad range of different extreme sea states. Each of the sea states is typically characterized by the significant 
wave height and the spectral peak period. Denoting the annual probability of exceeding xe in the sea state 
characterized by a significant wave height, hsi, and a spectral peak period, tpj by qij, the annual probability of 
exceeding xe reads: 
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In order to adopt xe as a proper estimate for the 10-2-probability response or the 10-4-probability response, , i.e. 
xc=xe, the sum has to equal 10-2 or 10-4, respectively. The important message by Eq. (1a), is therefore that 
there is not a one-to-one correspondence between the annual probability of exceeding a given sea state 
and the annual probability of the expected maximum response (or maximum crest height) of that sea 
state. The expected maximum wave crest height of the 10-4-probability storm is obviously a severe crest height, 
but its annual exceedance probability is significantly larger than 10-4. The annual exceedance probability for a 
given sea state, qij, is given as the product of two terms, the probability of exceeding xe during a T-hour 
realization of the sea state and annual probability of experiencing a T-hour realization of the sea state. In 
practise T=3hours is commonly adopted. Introducing these components Eq. (1a) can be written: 
 
(1): In this paper the notation q-probability value denotes the value corresponding to an annual exceedance probability of q.  
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It is seen from Eq. (1b) that a consistent extreme response prediction in view of rule requirements consist of a 
short term problem, i.e. the exceedance probability within stationary sea states, and a long term problem, i.e. the 
long term probabilities of the particular sea states.  No matter which method is used, a minimum requirement to 
the method is that it, exact or with good approximation, is able to combine these two problems, i.e. a long term 
response analysis is in principle required. Such an analysis can be performed by considering all sea states, “all 
sea states approach” ,  Battjes(1970), Nordenstrøm(1971), or it may merely include sea states corresponding to 
storms exceeding some threshold, “storm based approach” , Jahns and Wheeler(1972), Haring and 
Heideman(1978), Tromans and Vanderschuren(1995) .  
 
In closing this chapter on target quantities, we will discuss the importance of the predicted extreme sea state 
characteristics. Over the years much focus has been devoted to how to predict accurate estimates of the 
significant wave height. It should be stressed, however, that from a structural design point of view, the q-
probability significant wave height in itself is not of much concern. The structure will not fail as a consequence 
of a significant wave height, it will possibly fail if its final capacity is exceeded by an extreme individual 
response maximum. In ensuring that the annual probability for such a catastrophic scenario is sufficiently low, 
the method actually adopted should handle the convolution of the short term and the long term problem 
consistently.  
 
Over the last 2-3 decades, there has been an apparently everlasting discussion on whether one should adopt an 
“all sea state approach”  , or a “storm based approach”  for extreme value predictions. However, regarding a 
prediction of response extremes, the choice of method is not the most crucial element. Both classes of methods 
should, if being properly implemented, yield reasonable estimates for the target quantities, namely the q-
probability response extremes. If, on the other hand, the main purpose is to predict consistent estimates of the 
extreme storm peak significant wave height, the storm approach should be favoured. The latter approach may 
also be more convenient for prediction of response extremes in areas where the long term sea condition are of a 
typical two population nature.   
 
 
3 AVAILABLE METHODS  
3.1 Introductory Remarks 
As stated above, an important requirement to an adequate analysis method is that the short term (conditional) 
exceedance probabilities are consistently accumulated into a resulting long term (marginal) exceedance 
probability. For illustrative purposes, the undisturbed crest height is selected as the response quantity to be 
considered and below we will first discuss the short term modelling of this quantity.    
 
3.2  Short Term Modelling  
Provided that the surface elevation process, )(tΞ , can be modelled as a reasonably narrow banded stationary 

Gaussian process with zero mean and a variance, 2
Ξσ ,  the height of  the global crests, C, (i.e. largest maximum 

between adjacent zero-up-crossings) is described by the Rayleigh distribution: 
 

0;
2
1

exp1),|(
2

| ≥


















−−=

Ξ

c
c

thcF
psTHC σ

       (2) 

 
It is (and has been for some years) realized that the surface elevation process deviates significantly from the 
Gaussian assumption, i.e. the observed surface process is positively skewed with higher crests and shallower 
troughs than expected under the Gaussian assumption. An empirical correction to the Rayleigh model was 
suggested 3 decades ago by Jahns and Wheeler(1972). This model can be written: 
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d is water depth and β1 and β2 are empirical coefficients. β1=4.37 and β2=0.57 are recommended by Haring and 
Heideman (1978).  
  
At present the most advanced surface model being available for routine work, is the full random second order 
Stoke process see e.g. Forristall (2000) and papers referred to therein. Based on a large number of second  order 
simulations for various environmental conditions and water depths, a 2-parameter Weibull distribution is 
suggested as the short term model for crest heights; 
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where t1 is the mean wave period calculated from the two first moments of the wave spectrum, k1 is the wave 
number corresponding to the wave period t1, and d is the water depth. The parameters, αF and βF, are expressed 
in terms of two parameters, a measure of steepness, s1, and the Ursell number, Ur, which is a measure of the 
impact of water depth on the non-linearity of waves. These quantities read: 
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For long crested sea, the expressions for αF and βF, read, Forristall(2000): 
 

UrsF 1060.02892.03536.0 1 ++=α          (6) 
2

1 0968.01597.22 UrsF +−=β         (7) 
 
Over the years, the extreme wave crest height has sometimes been estimated by first of all estimating the 
extreme wave height. Thereafter an estimate of the corresponding crest height is obtained by introducing the 
wave height into a deterministic 5th order Stoke profile. This of course also required an estimate of the 
corresponding wave period and the water depth for the location under consideration. Commonly adopted 
models for the short term distribution of wave height are of Weibull type: 
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Various parameterisations are: 
 
Extremely narrow banded Gaussian sea (Rayleigh model):   

sH h707.0=α   and 2=Hβ    (9) 

 
Narrow banded Gaussian sea (Naess Model, Naess (1985)):  

sH h
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Empirical model (Forristall model, Forristall (1978)):  

sH h683.0=α   and 13.2=Hβ    (11) 

 
Where 

Ξ= σρ /)2/()2/( TRT , R( ) is the auto correlation function of the wave process, and T is the dominant 
wave period. Depending on water depth and wave steepness, the crest height of the 5th order Stokian wave 
profile is typically 58-62% of the wave height. Adopting for illustrative purposes C = 0.6 H, the corresponding 
crest height distribution can be obtained by transforming Eq. (8). 



  

 
Assuming that the 10-4–probability sea state (3-hour duration) for the area under consideration reads hs=18m 
and tp=17s, the distribution function for the 3-hour maximum crest height is shown for the various models in 
Figs. 1 and 2. The 3-hour extreme value distribution is obtained by raising the maxima dis tribution to the power 
equal to the number of maxima in 3 hours. Water depth is taken to be 150m, the mean wave period, t1, used in 
connection with Eq. (4) is approximated by 0.79tp, and ρ(T/2) is taken to be –0.73 corresponding approximately 
to a spectral peakedness factor of about 3.   
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Fig. 1  3-hour max crest height from crest height models   
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Fig. 2  3-hour max crest height from wave height models and 5th order Stoke profile 

 
It is seen from from Fig. 1, that for this particular depth, the Jahns and Wheeler model and the Forristall second 
order model nearly coincide. These models yield a significant larger extreme crest height than the Rayleigh 
model. In the figure we have also included the crest height distribution obtained using an approach suggested 
by Winterstein(1988), see e.g. Haver and Karunakaran(1998) for an application of this model as a crest height 
model. The latter model appears to be somewhat conservative as compared to the second order model of 
Forristall. It should, however, be stressed that regarding the most extreme waves, higher order effect may have 
a certain impact and, therefore, the Forristall model should be considered as lower bound model regarding 
extreme crest heights.   
 
If the indirect approach is used, Fig. 2 shows that there is a tendency of underestimating the height of the 3-hour 
maximum crest height (assuming the Forristall model to be an adequate description), except if the pure 
Rayleigh is adopted as the wave height model.   
 
 



  

 3.3  All Sea States Long Term Approach ( “All sea states approach”  ) 
3.3.1 Long term modelling of sea conditions 
Assuming that a short term sea state is reasonably well characterized by the significant wave height and spectral 
peak period, the long term wave climate is conveniently described by a joint probability density function for 
these characteristics. For the purpose of fitting the joint model to data, it is conveniently written: 
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A joint model for long term response analysis is given by Haver and Nyhus(1986). The joint modelling is based 
on the following probabilistic models: 
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The parameters of the hybrid model for the significant wave height are estimated as follows. At first the log-
normal parameters, θ and α, are estimated from the marginal data. The parameters of the Weibull tail are then 
estimated by requiring the hybrid model to be continuous in both density function and distribution function at h s 
= η. η is varied until a best possible fit is obtained. A scatter diagram for the Northern North Sea is given in 
Table A.1. The scatter diagram covers the years 1973 – 2001. The values of h s and tp represent ideally a pair of 
20-minute average values every 3 hours. In practise a significant amount of data is missing and the 69428 
simultaneous observations correspond to a data coverage of about 85%. Eq. (13) is fitted to the hs data. The kji-
square error normalized with respect to the corresponding number degrees of freedom is shown versus the shift 
point, η, in Fig. 3. At a reasonable acceptance level all models are rejected. This is mainly caused by 
inaccuracies for the lowest wave height classes, where a small error yields a very large contribution to the kji-
square variable due to the very large number of data (69428). Here we will mainly use these results for 
indicating that a minimum kji-square error is achieved for η between 2.8 and 3, corresponding to a 10-2-
probability value for hs between 14.1m and 14.9m. As our recommended model we will adopt the model for 
h=2.9m, which corresponds to a 10-2-probability value of 14.5m. The adopted model is compared to the 
empirical model in Fig. 4. It should be pointed out that the 10-2-probability value for this method is to be 
interpreted as the threshold which, in an accumulated sense, is expected to be exceeded for 3 hours during a 
100-year period, i.e. the 10-2 probability event for this method is not necessarily a single event.  
 
The parameters of the conditional distribution for Tp given Hs are taken from Johannessen and Nygaard (2000). 
All the parameters of the recommended joint omni-directional model is given in Table 1. 
 
Table 1 Parameters for the joint model of Hs and Tp 

Season α  θ  η  β  ρ  
1a  2a  3a  1b  2b  3b  

All-year 0.6565 0.77 2.90 2.691 1.503 1.134 0.892 0.225 0.005 0.120 0.455 
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Fig. 3 Normalized fitting error versus the shift point 
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Fig. 4 Fitted marginal model for the significant wave height 

 
 
3.3.2 Long term modelling of crest heights 
All global maxima approach 
In this approach we establish the distribution function for global maxima (i.e. largest maximum between 
adjacent zero-up-crossings) within a stationary sea state. Denoting the short term distribution function of crest 
heights by ),|(| psTHC thcF

ps

, the long term distribution of crest heights read, see e.g. Battjes (1970):  
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where the long term mean zero-up-crossing frequency is given by: 
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assuming that individual response maxima are statistically independent, the q-probability crest height is found 
by solving: 
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It is seen that we have not introduced any particular duration of the stationary sea states in connection with this 
approach. The reason for this is that since the all global maxima approach is adopted, it is the long term 
probability of the various combinations of  the sea state characteristics that is of concern (this corresponds to 
the expected cumulative relative duration for the various combinations). 



  

 
3-hour maximum approach 
Since we are main ly interested in extremes. We may alternatively focus on merely the largest crest height 
during a 3-hour stationary period. Bearing in mind that most wave measurements correspond to a duration of 20 
minutes, 1/3 hour would possibly be a more proper choice. A 3-hour duration is chosen herein since it is a 
typical choice in practical applications. The distribution function for the 3-hour maximum, is reasonably well 
approximated by raising the short term global maxima distribution to the power equal to the exp ected number 
of waves in 3 hours, ),(10800 0

)3(
ps

h thk +⋅= ν . Thus the long term distribution of the 3-hour maxima, )3( hC , reads: 
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An estimate of the q-probability crest height is found by solving (2920 is the number of 3-hour events per year): 
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In order to illustrate how extreme values can be predicted using methods from the field of structural reliability 
analysis, i.e. FORM (First-Order-Reliability-Method) and SORM (Second-Order-Reliability-Method), the 
probability of exceeding a crest height threshold, c~ , in an arbitrary 3-hour sea state is written: 
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For this particular case, the failure surface, cc ~= , is of a very simple form and the integral is easily solved 
numerically. However, the integral may alternatively be solved very efficiently using the above mention 
methods. The first step is to transform the problem into a variable space consisting of independent, standard 
Gaussian variables, see e.g. Madsen et al. (1986), i.e. 

1uhs → , 
2ut p → , and 

3
)3( uc h → . The failure surface is also 

transformed into the u-space. By a proper searching algorithm, the point on the failure surface being the nearest 
point to the origin is determined. This point is referred to as the design point, )~,~,~( 321 uuu , and it represents the 

most probable parameter combination as failure take place, i.e. as cc ~> . The distance to the design point, β, is 
given by the square root of the sum of squares of the design point coordinates. Under the assumption that the 
failure surface is approximated by a tangent plane in the design point (i.e the FORM approach is used), the 
exceedance probability of Eq. (22) simply reads )( β−Φ . In order to determine the q-probability crest height, c~  
is varied until the estimated probability equals q/2920.  
 
If one mainly is interested in predicting extremes corresponding to a given annual exceedance probability, it is 
more convenient to follow an inverse procedure referred to as IFORM, see e.g. Winterstein et al. (1993), Haver 
et al. (1998). Since the target “failure” probability is known, pf = q/2920, one knows the distance, β, to the 
requested failure surface, e.g. β=5.367 for q=10-4. This means that we, a priori, know that the 10-4-probability 
crest height in the u-space will be located somewhere on the surface of a sphere with radius 5.367. The aim of 
the IFORM algorithm is  to search this surface for the point being the tangent point for the failure surface in the 
u-space, i.e. the design point, )~,~,~( 321 uuu .  Transforming this point back to the physical parameter space, the c-

value corresponding to 
3

~u  represents an estimate for the q-probability crest height. 

 
For the crest height problem as formulated herein with few variables and explicit distribution functions for all 
variables available, the FORM approach does not represent a major improvement in computational efficiency.  
However, for more complicated problems involving for example a larger number of random variables this 
approach will often represent an efficient solution technique if one mainly is interesting in values corresponding 
to  very low exceedance probabilities. As an alternative to obtaining the short term probabilistic structure of the 
crest heights by a full second order time domain simulation, a FORM approach is discussed by Tromans and 



  

Vanderscuren (2002). Here we have used the Forristall crest height model and have thus avoided the time 
consuming second order simulations. 
 
3.4  Peak over Threshold Long Term Approach ( “storm based approach”  ) 
3.4.1 Introductory Remarks 
As long term extremes are our main concern, an alternative approach is to consider the storm maximum crest 
height as our “short term” quantity. Short term is in this connection put in quotation marks since the storm itself 
is a non-stationary event, which, however, can be approximated by a sequence of stationary events. Regarding 
examples of this approach reference is made to e.g. Jahns and Wheeler (1972), Haring and Heideman (1978) 
and Tromans and Vanderscuren (1995). The basic idea by this approach is to establish the distribution function 
of the largest wave or response during an arbitrary storm. Over the years this target has been approached in 
various ways. A common approach has been to merely account for the observed storms. Each observed storm 
has been given the probability 1/ns, where ns is the number of storms, and there is zero probability for more 
severe storms than those included in the observed sample. This may yield reasonable estimates for the q-
probability extremes provided the storm sample is very large and that a reasonable amount of very extreme  
storms are included in the sample. Tromans and Vanderschuren (1995) recommend that one should account for 
non-observed events when establishing the distribution function for the storm maximum response of an 
arbitrary storm. The way they solve this is that the storm maximum response is described conditionally upon 
the most probable largest storm maximum. A probabilistic model is fitted to the storm sample of most probable 
largest storm response maxima. The long term distribution of storm maximum response (i.e. the distribution of 
the largest value in an arbitrary storm) is obtained by convoluting the conditional distribution of storm 
maximum response given the most probable largest storm maximum response with the long term distribution of 
most probable storm maximum. In this way the effect of non-observed storms is accounted for, and, in 
principle, the approach is brought closer to the long term analyses approaches reviewed in Ch. 3.3. For realistic 
sizes of the storm samples, it is important to account for non-observed extreme events. We will illustrate this in 
the end of this chapter.  
 
In the following the investigation is restricted to the wave crest height. In principle, we will assume that the 
distribution function of the storm maximum crest height, C(s), is reasonably well defined if we know the storm 
maximum significant wave height, 

spsH ,
, the simultaneously occurring spectral peak period, 

sppT ,
, and the 

duration, ∆ , of the part of the storm exceeding, say, 80% of the storm maximum significant wave height. 
Utilizing the suggestions in Tromans and Vanderscuren(1995), we may possibly represent the resulting effect 
of these three characteristics into a single characteristic, namely the most probable largest storm crest height, 

)(~ sc . Regarding the wave crest height, however, we think a reasonable accurate conditional distribution can be 
obtained by simply conditioning the storm maximum crest height on the storm maximum significant wave 
height. Thus the long term distribution of storm maximum crest height reads: 
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3.4.2 Distribution of storm maximum significant wave height 
Storm maximum significant wave heights for Northern North Sea storms exceeding 10m significant wave 
height are given in Table A.2. A probabilistic model commonly adopted in connection with peak-over-threshold 
assessments is the Generalized Pareto model, see e.g. Naess and Clausen(2002):  
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The notion  (z)+ means max(0, z). θP  > 0 is the scale parameter and cP  is the shape parameter. As shown in Eq. 
(24), the Generalized Pareto distribution will approach the Exponential distribution as the shape parameter 
approaches zero. Moment estimators for the Pareto parameters read, Naess and Clausen(2002): 
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Using these, we find θP = 0.919 and cP = -0.130. The fitted Pareto model is compared with the empirical 
distribution in Fig.5. The fitted exponential, cP  = 0 and θP=0.813 model is shown in the same figure. Both 
models show a reasonable fit to the data, but they differ very much as we enter into the range of the most 
interesting extremes. With an average number storms equal to 1.375 per year, the 10-2 annual probability level 
corresponds to 4.92 in the vertical axis of Fig. 5, while the 10-4 probability level corresponds to 9.53. A 10-4 
probability significant wave height of about 15m seems rather low for the Northern North Sea. If we suggest 
that the Exponential model is the true model, we may simulate realizations for a sample of 33 storms. For this 
generated sample (from an exponential model), we may estimate the Pareto parameters. By repeating the 
simulation 50 times we obtain a set of 50 estimates for the Pareto parameters. Based on this, a 90% interval for 
cP   is about (–0.25, 0.15). Since our estimated value for the actual storm sample yield a value well within this 
interval, we will adopt the Exponential distribution as our model for storm maximum significant wave height. 
This corresponds to a 10-2-probability significant wave height of 14.0m and a 10-4-probability significant wave 
height of 17.8m.  
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Fig. 5 Fitted distribution for storm maximum significant wave height, Northern North Sea 1973 - 1997 
 

 
In order to indicate the adequacy of the extremes predicted above, annual extremes for the same period are 
considered. The data are shown in Table A.3. A Gumbel model is fitted to the data by the method of moments 
and compared to the empirical distribution in Fig.6. The 10-2-probability level corresponds to 4.6 in the Gumbel 
scale, while 10-4-probability level corresponds to 9.21. The fitted Gumbel model seems to yield a reasonable fit 
to the data, and it suggests a 10-2-probability significant wave height of about 14m, while the 10-4-proability 
value reads about 18m. These results support the selection of the exponential model for the storm maximum 
significant wave height. It should be mentioned that the higher order statistical moments, skewness and 
kurtosis, of the annual extreme value sample are lower than expected for a Gumbel variable. The Gumbel 
model is an asymptotic result and by introducing a generalized Gumbel model, see e.g. Winterstein and Haver 
(1991), one may possibly obtain somewhat lower extreme values for the annual extreme value approach.   
 
3.4.3 Distribution function of storm maximum crest height 
For each stationary part of the storm, the crest heights are assumed to follow the Forristall crest height model, 
Eqs. (4,6 and 7). As a consequence of that, it  is likely that the storm maximum crest height is reasonably well 
modeled by the Gumbel distribution: 
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Data: Northern North Sea 1973 - 1997
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Fig. 6 Annual extreme value distribution of significant wave height 

 
The Gumbel parameters are modeled as functions of the storm maximum significant wave height only. This 
will not be perfectly fulfilled. 
 
 Provided that the mean, 
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available, the Gumbel parameters read: 
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Herein samples of storm maximum crest heights are generated by means of Monte Carlo simulations. For each 
storm 100 simulations of the 3-hour maximum crest height are generated for each stationary 3-hour period of 
the observed storm event. From these data sets we obtain 100 generated realizations of the storm maximum 
crest height where all stationary storm periods are properly accounted for. Based on these realizations, the mean 
and standard deviation are calculated and the corresponding Gumbel parameters are estimated by Eq. (27). The 
estimated Gumbel parameters are shown versus storm peak significant wave height in Fig. 7. A linear 
regression line is determined for both parameters and these expressions, given in Fig. 7, are used in 
combination with Eq. (26). It is seen that a certain amount of scatter is neglected when using these expressions. 
The correlation coefficient between αC and h is found to be 0.85, while the correlation between βC and h is 
lower and reads 0.6. If  the scatter is caused by inherent variability, the consequence of neglecting it is that the 
estimated extreme values may be slightly on the low side.  
 
A simple investigation of the sensitivity to this scatter is done by considering the estimated parameters 
uncorrelated and determine the long term distribution of crest heights using mean parameter values +/- one 
standard deviations when introducing Eq. (26) into Eq. (23). This indicated that until more careful studies are 
carried out, 0.5m should be added to the estimated extremes in order to account for the scatter around the 
regression lines. 
 
The long term distribution of storm maximum crest height is now obtained by introducing Eqs. (24 and 26) into 
Eq. (23). The q-probability crest height is then found by solving: 
 

r
q

cF qC s =− )(1 )(          (28) 

where r is the expected number of storms per year. For the selected storm criterion, h s,sp > 10m, 375.1=r . 
 
The effect of including non-observed storm events is indicated in Fig. 8. The curve referred to as “Empirical” is 
obtained by merely including the observed storm events. The probability of occurrence for each storm is equal 
to the inverse number of events. The curve referred to as “Extrapolated” is obtained by extrapolating the storm 



  

maximum significant wave height distribution beyond the range covered by measurements. At the 10-2-
probability level (4.92 at vertical axis) the effect is about 0.3m, while for the 10-4-probability level (9.53 at 
vertical axis) the effect is slightly more than 1m.  
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Fig. 7 Gumbel parameters for C(s) versus storm maximum h s 
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Fig. 8 Long term distribution of storm maximum crest height 

 
 
3.5 Environmental Contour Line Approach 
The long term distribution of crest heights, Eq. (17 or 20), is obtained as a weighted sum of the short term 
distribution for all possible sea states. One may, however, come up with reasonable estimates for the long term 
extremes by means of short term statistics by utilizing the so called environmental contour lines for significant 
wave height, 

sH , and spectral peak period, 
pT .  

 
Contour lines for the joint model presented in Ch. 3.3.1 are shown in Fig. 9. Regarding exceedance of a 
specified crest height level, i.e. wave-deck impact problems, it is the point with the highest significant wave 
height that is the most unfavourable location along the contour lines. If we at first assume that the distribution 
of the largest crest height in a given 3-hour sea state is extremely narrow, then we can neglect the randomness 



  

of the conditional extreme value and simply adopt the median (or the mean value) as a characteristic value. In 
that case we will know that the q-probability crest height is expected to be realized in the most unfavourable q-
probability sea state (which for this problem will be the sea state with the highest significant wave height). The 
q-probability crest height can then be approximated by: 
 

)),(|50.0(ˆ 1
|)3( qpsTHCq thFc

ps
h

−=         (29) 

 
where (hs, tp)q  denotes the most unfavourable parameter combination (in view of the problem under 
consideration) along the q-probability contour line. The conditional distribution for C(3h) is found by raising Eq. 
(4) to the power equal to the number of waves during a 3-hour period of this storm event.   
 
In practice one cannot neglect the short term variability of the 3-hour extreme value. The correct approach to 
account for this variability is of course to carry out some sort of a long term analysis. One can, however, 
approximate the long term results by selecting a higher fractile as the representative 3-hour characteristic, see 
e.g. Winterstein et al. (1993) for a more thorough discussion. In Haver et al. (1998), a fractile of about 0.85 is 
recommended regarding the estimation of 10-2-probability crest heights from the 10-2-probability environmental 
contour line. It is reasonable to expect that as the 10-4-probability crest height is to be estimated from the 10-4-
probability contour line, the relative importance of the short term variability is somewhat increased. As a 
consequence it is likely that a somewhat higher fractile should be used. Assuming a fractile level of 0.90 to be 
adequate, a proper estimate of the 10-4-probability crest height is given by: 
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Fig. 9 Environmental contour lines for the Northern North Sea (q=0.63 corresponds to 1-year return period) 

 
 
The 10-4-probability sea state is given by hs=18m (or, more correct, 17.8m) and tp=17s. 3-hour extreme value 
distributions for this sea state are shown in Fig. 1. Assuming that the 90% percentile is a reasonable short term 
characteristic for estimating the 10-4-probability crest height, the figure suggests that this quantity is around 
22m if emphasis is given to the results provided by the Forristall crest height model.  For wave problems, the 
environmental contour line principle does not represent any major improvement since it is rather straight 
forward to do a full long term analysis. For complicated response problems where extensive model testing or 
time domain simulations are necessary, however, it represents a convenient tool for an approximate “long term” 
response analysis.  
 



  

4.   PREDICTED EXTREME WAVE CREST HEIGHTS IN THE NORTHERN NORTH SEA  
4.1 Results  
Using the methods described in the previous chapter, the estimated 10-2- and 10-4-probability crest heights are 
given in Table 2. The corresponding 10-2- and 10-4-probability significant wave heights are also given in the 
table.  
 
Table 2 Predicted extreme wave characteristics for the Northern North Sea (The reference to Figs. 1 and 2 is for 
the 10-4 case, corresponding figures were produced for the 10-2 case.)  

Sig. wave height  (m) Crest height (m) Approach Reference 
10-2 10-4 10-2 10-4 

Eq. (17 and 19) 14.5 17.9 17.2 21.8 All sea states 
approach Eq. (22 and 21), IFORM “ “ 16.8 21.7 

Eq. (23 and 28) 14.0 17.8 16.1 21.0 Storm data 
approach Assumed correction for scatter shown in Fig.7 - - 16.6 21.5 

Fig. 1, Forristall Crest Model 14.5 17.9 17.0 21.8 
Fig. 1, Rayleigh Crest Model “ “ 15.4 19.0 
Fig. 2, Forristall Height Model + 60% Crest “ “ 16.6 20.6 

Contour lines, 
90% fractile 

Fig. 2, Rayleigh Height Model + 60% Crest “ “ 18.5 22.9 
Fig. 1, Forristall Crest Model “ “ 15.4 19.2 
Fig. 1, Rayleigh Crest Model “ “ 13.8 17.0 
Fig. 2, Forristall Height Model + 60% Crest “ “ 15.0 18.5 

Contour lines, 
50% fractile 

Fig. 2, Rayleigh Height Model + 60% Crest “ “ 16.5 20.3 
 

4.2 Discussion 
The all sea state approach and the storm data approach indicate a similar severity regarding the significant wave 
height. Too much emphasis should not be given to this comparison since the target quantities are not the same. 
The all sea state approach predicts the threshold, hsq, which is expected to be exceeded for 3 hours 
(accumulated sense) per 1/q years, while the storm approach predicts the maximum significant wave height of 
the storm corresponding to an annual probability of exceedance of q. Furthermore, both approaches will be 
associated with uncertainties, both regarding choice of probabilistic models and the fitting of these models to 
data. It should also be remembered that the fitted Generalized Pareto distribution gave much lower extremes 
than the model finally chosen. It may well be that one should have adopted a lower threshold giving a much 
larger storm sample and thereby obtain somewhat more robust estimates for the Pareto parameters.  
 
It is more interesting to compare the predicted extreme crest heights. Before correcting for the scatter around 
the regression lines in Fig. 7, the storm based approach yield estimates about 5% lower than the all data 
approach. This may well be a true difference. In both methods extreme value predictions are used assuming 
statistical independence between crest heights considered. This assumption is possibly closer to being fulfilled 
by the storm based approach and, consequently, one may expect that the all sea state approach should give 
slightly conservative extreme value estimates. However, one should be careful in utilizing this difference 
because by correcting the extremes for the above mentioned scatter increases the predictions to more or less the 
same level as predicted by the all sea state approach. This correction is rather approximate, and further work on 
the distribution function of the maximum storm crest height is recommended. In that connection one should 
account for the fact the significant wave height most likely will fluctuate somewhat during the 3-hour storm 
steps. 
 
The contour line results suggest clearly that it is important to adopt a higher fractile than the median if long 
term extremes are to be estimated by a short term consideration. The importance of an accurate crest height 
model is also clearly demonstrated. 
 
Since the most extreme waves typically will be somewhat affected by terms of order 3 and 4, the results 
obtained using second order models should be considered a slightly on the low side, i.e. for the Northern North 
Sea a the 10-4-probability crest height should not be taken smaller than 22m.  
 



  

It should also be pointed out that these predictions do not cover possible transient and strongly non-linear wave 
phenomena referred to as “freak waves”. If such events take place, the corresponding crest height may exceed 
the predictions above by several meters. See e.g. Haver and Andersen (2000) and Olagnon and 
Athanassoulis(2000) for a discussion on the existence of  such events.  
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Appendix  Data Tables 
 

Table A.1 Scatter diagram Northern North Sea, 1973 – 2001. Values given for hs and tp are upper class limits. 
tp   (s) 

hs  (m) 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 > 20
0.5 18 15 123 113 110 390 260 91 38 42 32 3 19 13 9 1 3 2 7 
1.0 16 49 675 433 589 1442 1802 959 273 344 125 33 64 29 13 1 7 1 6 
1.5 5 32 417 893 1107 1486 2757 1786 636 731 299 121 92 43 18 10 5 2 13 
2.0 1 0 102 741 1290 1496 2575 1968 780 868 492 200 116 51 31 8 4 4 8 
2.5 0 0 9 256 969 1303 2045 1892 803 941 484 181 157 58 23 19 5 1 8 
3.0 0 0 1 45 438 1029 1702 1898 705 957 560 218 196 92 40 11 4 2 5 
3.5 0 0 1 4 124 650 1169 1701 647 865 456 237 162 100 36 12 6 1 5 
4.0 0 0 2 0 33 270 780 1369 573 868 427 193 157 91 51 13 3 0 1 
4.5 0 0 0 0 3 90 459 1017 466 761 380 127 137 86 31 23 6 5 0 
5.0 0 0 0 0 0 15 228 647 408 737 354 119 96 50 32 18 2 4 1 
5.5 0 0 0 0 0 2 68 337 363 580 283 94 92 31 24 10 6 2 0 
6.0 0 0 0 0 0 1 20 166 221 418 307 63 76 24 13 9 4 0 0 
6.5 0 0 0 0 0 0 5 50 140 260 257 59 49 20 12 4 2 2 2 
7.0 0 0 0 0 0 0 0 23 90 180 193 41 53 20 5 3 3 0 0 
7.5 0 0 0 0 0 0 0 6 25 93 121 45 46 17 5 5 0 1 0 
8.0 0 0 0 0 0 0 0 3 14 50 84 26 47 11 6 0 1 0 0 
8.5 0 0 0 0 0 0 0 0 7 25 45 23 25 20 8 0 0 0 0 
9.0 0 0 0 0 0 0 0 1 2 12 30 22 20 19 0 0 0 0 0 
9.5 0 0 0 0 0 0 0 0 1 2 20 21 14 7 1 1 0 1 0 

10.0  0 0 0 0 0 0 0 0 0 2 5 4 21 6 2 0 0 0 0 
10.5  0 0 0 0 0 0 0 0 0 3 4 8 9 12 2 0 0 0 0 
11.0  0 0 0 0 0 0 0 0 0 0 2 0 4 3 1 0 1 0 0 
11.5  0 0 0 0 0 0 0 0 0 0 2 1 2 3 0 0 0 0 0 
12.0  0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 0 
12.5  0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
13.0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

 
 
 

Table A.2 Peak values for the significant wave height of storms exceeding 10m (1973-1997) 
Storm 

No. 
Storm date Max hs   

(m) 
Storm 

No. 
Storm 
date 

Max hs   
(m) 

Storm No. Storm date Max  hs  
(m) 

1 6/11-1973 11.8 12 24/11-1981 10.15 23 25/12-1990 10.5 
2 12/1 -1974 12.1 13 6/1- 1983 10.42 24 18/10-1991 10.0 
3 7/12-1975 10.19 14 9/1-1983 10.54 25 1/1-1992 11.5 
4 15/1 -1976 10.14 15 31/10-1983 10.18 26 4/1-1993 12.0 
5 20/1 -1976 10.4 16 29/3 -1985 10.69 27 17/1 -1993 11.0 
6 31/3 -1977 10.61 17 28/2 -1988 10.20 28 1/1-1995 10.5 
7 19/3 -1978 11.35 18 22/12-1988 12.96 29 5/1-1995 11.5 
8 5/12-1979 10.36 19 29/1 -1989 10.08 30 20/1 -1995 10.5 
9 13/12-1979 10.24 20 15/2 -1989 10.35 31 31/1 -1995 11.0 

10 4/1-1980 10.56 21 18/2 -1989 10.27 32 12/3 -1996 11.0 
11 15/1 -1981 11.24 22 12/12-1990 10.5 33 17/2 -1997 12.0 

 
 
 

Table A.3 Annual maximum significant wave height 1973 – 1997. 
Year Hs (m) Year Hs (m) Year Hs (m) 

1973/1974 12.1 1981/1982 10.15 1989/1990 9.0 
1974/1975 8.7 1982/1983 10.54 1990/1991 10.50 
1975/1976 10.19 1983/1984 10.18 1991/1992 11.50 
1976/1977 10.61 1984/1985 10.69 1992/1993 12.0 
1977/1978 11.75 1985/1986 9.93 1993/1994 9.0 
1978/1979 9.06 1986/1987 9.51 1994/1995 11.5 
1979/1980 10.56 1987/1988 10.2 1995/1996 11.0 
1980/1981 11.24 1988/1989 12.96 1996/1997 12.0 

 


