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Introduction

Spectral wind wave models such as WAVEWATCH III and SWAN
continue to be applied in coastal applications. In these applications,
utilizing unstructured meshes along with implicit time stepping
in order to capture the irregular bathymetries of coastlines while
avoiding restrictive CFL conditions can save computational cost
without sacrificing accuracy. The finite element method is a
numerical method that is appealing for this kind of situation
since it allows for unstructured meshes, is capable of higher order
approximations, and is backed by rigorous approximation theory.
In this work, a finite element model for the Wave Action Balance
Equation (WAE) is developed using the open-source FEniCSx
framework. The model is applied to some test cases from the
Office of Naval Research (ONR) Test Bed and compared to analytic
solutions, lab data, and SWAN output.

Figure: Convergence results in L2 (left) and L∞ norms
with respect to h refinement

Methods

To model wave action with finite elements, we discretize a weak
form of the WAE in Ω ⊂ (x, y, σ, θ) along with a finite difference
approximation in time. Since the WAE is an advection equation,
stabilized finite elements techniques must be employed. The
Streamline Upwind Petrov-Galerkin (SUPG), Least Squares, and
Discontinuous Galerkin (DG) methods were all implemented for
simplified domains Ω ⊂ (x, σ) but for the purposes of solving the

full WAE, the SUPG method is employed, find N ∈ U(Ω, t):(
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When source terms, S, are turned off, the time derivative
is estimated with the second order Crank-Nicolson implicit
approximation. When source terms are active, the discrete operator
is split between advection and sources via the 2nd order Strang
splitting scheme. The advection operator still uses the Crank-
Nicolson scheme to advance in time while the source terms use an
explicit second order Runge-Kutta scheme to advance in time. The
model is implemented in Python using the FEniCSx library which
has built-in parallelism via MPI. Furthermore, the model is capable
of unstructured meshes in both geographic and spectral spaces.
The new wave model is applied to multiple test cases from the

ONR test bed including shoaling, refraction, currents, and a wave
breaking case. The shoaling, refraction, and breaking cases were
tested with unstructured meshes in geographic space. The shoaling,
refraction, and currents cases have analytic solutions to compare
against while the wave breaking case is compared to both lab data
and SWAN output.

Figure: Unstructured meshes employed in test cases
(geographic on top, spectral on bottom)

Results and Discussion

Figure: Hs and θmean of refraction case (top), and Hs of
breaking case (bottom)

For the refraction case, the observed RMSE error in Hs is 0.00261
m and RMSE error in θmean is 0.119 degrees while the l∞ error is
0.00865 m and 0.1946 degrees with respect to the analytic solution.
For the wave breaking case the error in significant wave height
with respect to the observations were 0.0064 m for WAVEx and

0.00556 m for SWAN while the l∞ errors were 0.0179 m and 0.015
m respectively. The new wave model also showed robustness with
respect to taking large time steps that violate the CFL condition.

Acknowledgements
The authors gratefully acknowledge the computational resources
provided by the Texas Advanced Computing Center and the
Frontera supercomputer under allocations ”ADCIRC” and

”DMS21031”. The author ML also gratefully acknowledges the
support of the Oden Institute CSEM Fellowship.


