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Motivation

Figure: Change in population in US counties 1970-2010 (Image courtesy of
NOAA) [10]
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Figure: Image courtesy of NOAA GOES

Figure: Figure courtesy of US EPA
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Motivation

Figure: Image courtesy of NASA
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Background

Storm Tide modeling
historically performed
with high resolution,
depth-averaged regional
models [2, 8, 12]

Ocean modeling
historically performed
with coarser, depth
resolving, global
models1[9, 1]

Recent developments
have allowed for high
resolution 2D global
models [11, 13]

1Image courtesy of GOFS3.1 website [4]
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Background

Problem

How do we bridge the gap in scales to capture deep-ocean, density driven,
baroclinic effects present in Ocean Global Circulation Models (OGCMs)
while maintaining the quality of results seen in high-resolution, barotropic,
total water level models?
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Research Scope

Figure: Proposed coupling framework
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Research Scope
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ADCIRC2D+ Coupling Framework
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Research Goals

Research Goal

Deepen the understanding of how oceanic processes and their
parameterizations within numerical models affects global total water levels.
Develop approaches to incorporating these processes across scales in a
physically consistent way to ensure accurate total water level predictions
for use in a global forecasting model.

How?

Investigate methods to incorporate density-driven effects in a
depth-averaged global total water level model while maintaining the
accuracy of tidal results. Understand the physical reasons that
modifications to the depth-averaged shallow water equations must be
implemented and the best methods to implement them. Examine how
externally derived density-driven effects impact total water levels in a
hydrodynamic model.
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Governing Equations: Shallow Water Equations
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Depth-Averaged Baroclinic Pressure Gradient

BPG =
∫

η

−h

(
g∇

[∫
η

z

ρ −ρ0

ρ0
dz

])
dz

Where,

h = Bathymetric depth below geoid

η =Water height wrt geoid

ρ =Density at depth z

= F (temperature,salinity)

ρ0 = Reference Density
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Internal Tide Generation/Dissipation

C= Cit

√(
N2
b −ω2

)(
N̄2−ω2

)
4πω

∇hUT ∇h

Where,

UT = Tidal component of velocity

Nb = Brunt-Väisälä frequency at seabed

= F (temperature, salinity)

N̄ = depth averaged Brunt-Väisälä frequency

= F (temperature, salinity)
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”Tidal” Velocities

Question:

How do we isolate the ”tidal” velocity and is it even necessary?

Approaches:

1 Assume U ≈ UT

2 Use a 25-hour lagged average filter to remove the tidal component of
velocity and then let UT = U −U

3 Use a high-pass filter that removes subtidal energy and let this filtered
velocity be the tidal velocity.
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Filtering

yout =
n

∑
k=−n

αkyk

Approaches

Approach 1 is essentially n = 0 with α0 = 1 (no filter whatsoever)

Approach 2 (hereafter LA25) filters out high-frequency (i.e., tidal)
velocities with a low-pass filter where n = 12 and αk =

1
25 .

Approach 3 (hereafter MHP) uses a high-pass filter with a filter
length of 49 hours. This filter is derived from the low pass Munk
”Tide Killer” Filter [7].
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Filtering
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Filtering
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Filtering
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Tidal Error of Filters

Blakely October 5, 2023 23 / 53



Tidal Results of ADCIRC2D+

The improvement in results when internal wave dissipation is applied
only at the tidal frequencies provides strong evidence that internal
waves in the deep ocean are generated at tidal frequencies.

Due to the extreme sensitivity of global tides to changes in barotropic
to baroclinic conversion, filtering is necessary when parameterizing
internal tide dissipation.

It is not simply a matter of matching the tidal kinetic energy in a
system to ensure accurate tidal results.
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Tidal Results of ADCIRC2D+
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Tidal Results of ADCIRC2D+
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Tidal Results of ADCIRC2D+

Error Metric ADCIRC2D ADCIRC2D+

DM2,stations (cm) 6.81 7.77
DM2,tpxo9,deep (cm) 1.94 2.76
DM2,tpxo,shallow (cm) 7.87 10.13
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Non-Tidal Results of ADCIRC2D+

Measures of Model Skill:

γ
2 =

Var(ηm−ηo)

Var(ηo)

Skill = 1−
∫ T
0 (ηm−ηo)

2dt∫ T
0 (|ηm−ηo |+ |ηo −ηo |)2dt

RMSE =

[
1

T

∫ T

0
(ηm−ηo)

2dt

] 1
2
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Non-Tidal Results of ADCIRC2D+
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Non-Tidal Results of ADCIRC2D+
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Non-Tidal Results of ADCIRC2D+

Measure Pago Pago, USA Colombo, SRL Noto, JPN Atka, USA Mean

γ2TWL,BT 0.04 1.10 0.58 0.05 0.44

γ2TWL,BC 0.04 0.86 0.30 0.08 0.40

SkillTWL,BT 0.99 0.76 0.79 0.99 0.90
SkillTWL,BC 0.99 0.82 0.92 0.98 0.91
RMSETWL,BT (cm) 5.60 14.80 11.90 8.20 28.58
RMSETWL,BC (cm) 6.00 13.10 8.60 10.60 27.95
γ2

η30,BT
0.93 1.39 0.89 0.14 0.70

γ2
η30,BC

0.30 0.43 0.22 0.07 0.40

Skillη30,BT 0.30 0.07 0.59 0.96 0.57
Skillη30,BC 0.93 0.82 0.94 0.98 0.81
RMSEη30,BT (cm) 4.00 7.20 8.90 2.60 7.92
RMSEη30,BC (cm) 2.20 4.00 4.40 1.90 6.13
γ2

ηNTR ,BT
0.93 1.01 0.42 0.08 0.65

γ2
ηNTR ,BC

1.07 0.99 0.41 0.14 0.79

SkillηNTR ,BT 0.49 0.25 0.84 0.98 0.61
SkillηNTR ,BC 0.75 0.53 0.86 0.97 0.66
RMSEηNTR ,BT (cm) 3.80 9.90 7.30 3.60 17.70
RMSEηNTR ,BC (cm) 4.10 9.80 7.20 4.80 18.52
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Non-Tidal Results of ADCIRC2D+ (Highlights)

Total water level
errors stayed
largely the same

Non tidal residual
errors saw
modest
improvement
mid-latitudes but
on average
stayed the same

30-day average
sea levels saw
drastic
improvement at
mid-latitudes and
modest
improvement
elsewhere
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Conclusions

Sensitivity to internal tide dissipation (and other dissipative
parameters) is highlighted. Without accurate (both temporally and
spatially) capture of this phenomenon, global tides will not be
accurately captured.

Inclusion of density-driven effects—even in depth-averaged form—can
greatly improve mean sea level predictions of a high-resolution total
water level model.

Further evidence that deep-water internal waves (and their ensuing
dissipation) are generated predominantly at tidal frequencies.
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Summary

It is possible to downscale coarse OGCM data to the scale of
high-resolution, depth-averaged total water level models and capture
density-driven effects without the high overhead of solving the full 3D
equations on the high-resolution mesh.

Filtering out low-frequency energy in the velocity signal for the
internal tide dissipation parameter helps to spatially and temporally
apply this phenomena to the correct areas, helping to improve tidal
results in baroclinic models.

The fact that the tidal signal is improved with higher quality filtering
provides further evidence that internal waves are generated in the
deep ocean at tidal frequencies.
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Future Work

Apply ADCIRC2D+ to the ND-CHL/NOAA Global Storm Tide
Operational Forecasting System (GSTOFS).

High resolution (80 m to 25 km) unstructured global model.
This work includes performing 12-year hindcasts on this high-resolution
model.

Work with other members of ND-CHL to couple ADCIRC not only to
GOFS3.1 but also to the National Water Model (NWM).

Use more refined parameter estimation techniques (EnKF, etc.) to
find optimal friction coefficients.

Examine (even) more refined filters and their frequency responses in
the coupled model.

This could include using high-pass filters on supertidal energy in
coastal zones where internal waves are generated at higher frequency!
Could apply separate filters to diurnal and semidiurnal frequencies to
see the impacts of different frequencies on tidal amplitudes.
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Thank you

Questions?
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Tide results in current hydrodynamic models

Table: Comparisons of tidal results of a selection of hydrodynamic models.

Model Resolution DM2,deep (cm)2 DM2,shallow (cm)1 Source

MITgcm3 9 km 32.33 - [6]
HYCOM3 12.5 km 4.4 - [1]
SCHISM 2-15 km 4.2 14.3 [13]
ADCIRC2D 2-25 km 1.93 7.87 [3]
ADCIRC2D+ 2-25 km 2.76 10.13 -

2Compared to TPXO9-atlas [5]
3Non-data assimilated
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ADCIRC2D+ Error Metrics
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Baroclinic Internal Tide Tensor

∇h ·UT ∇h =

[
h2x hxhy
hxhy h2y

]
·A ·U

A =
1

2
A∗+AT∗ =

[ uT
u

1
2(

uT
u + vT

v )
1
2(

uT
u + vT

v ) vT
v

]
A∗ =

[uT
u

vT
v

uT
u

vT
v

]
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Mesh-Dependency of Cit

Cit is highly mesh-dependent

When optimal Cit from RG1 is applied to high-resolution forecasting
mesh, results degrade
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Cost Function

Z k
o,m = Reko,m+ iImk

o,m

Z k
b,m = Rekb,m+ iImk

b,m

f km(x) = gk
m(x)+ ihkm(x)

gk
m(x) =

M

∑
j=1

gk
j ,m(xj)

hkm(x) =
M

∑
j=1

hkj ,m(xj)

Z k
m,i = Z k

b,i + f ki (x)
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Approach 1: External Forcing

u(t) =
N

∑
i=1

fiUicos(ai t+{Vo +u}i −κi )

v(t) =
N

∑
i=1

fiVicos(ai t+{Vo +u}i −κi )

⟨u,v⟩=Meridional and zonal tidal velocities

fi =Nodal factor of i th tidal constituent4

⟨Ui ,Vi ⟩= Amplitudes of tidal velocities

ai = Frequency of i th tidal constituent

{Vo +u}i = Equilibrium argument of i th tidal constituent

κi = Phase lag of i th tidal constituent

4Used 8 major constituents: M2, Q1, O1, P1, K1, N2, S2, and K2
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Approach 1: External Forcing

Lessons Learned

While it is possible to use external estimates for forcing terms (i.e.,
ηSAL, BPG , etc.), external extimates of dissipation do not appear to
work.

Without an in-line calculation of dissipation parameter, the system is
not able to react to changes in dissipation.

As will be shown, exactly matching the tidal dissipation is not
adequate to avoid degradation of tidal results.
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Downscaling of GOFS3.1 Salinity and Temperature Data
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Downscaling of GOFS3.1 Salinity and Temperature Data
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Downscaling of GOFS3.1 Salinity and Temperature Data
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Non-Tidal Results of ADCIRC2D+
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Non-Tidal Results of ADCIRC2D+

Table: Differences between mean sea levels of ADCIRC models and GOFS3.1
calculated over the time period January 1, 2017 to January 1, 2020.

Model E (cm) |E | (cm)

ADCIRC2D -0.82 52.43
ADCIRC2D+ 0.42 14.71
ADCIRD2D Detided -0.81 52.01
ADCIRC2D+ Detided 0.43 13.36
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Storm Drawdown
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