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Motivation

Develop a high-resolution configuration in the Gulf of Mexico (GoM) region
to study extreme weather events using the Weather Research and
Forecasting (WRF) model.

Perform high-resolution simulations of Hurricanes Harvey (2017) and Ida
(2021) in WRF using GoM with the horizontal resolution of < 4 km (current
simulations include resolution of around 12 km).

Study how meteorological data including vorticity and temperature fields can
improve our understanding on tracking cyclones.

Use meteorological data from WRF as inputs of atmospheric forcing in
coastal models to improve estimates on storm surge and rainfall.

Provide high-fidelity data for Machine Learning groups on their task for
digital-twin developments.



Model Setup

High-resolution simulations of Hurricanes Harvey and Ida in the WRF model.

GoM configuration
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Hurricane Harvey Track

The hurricane track in WRF simulations outperforms that in NHC-OFCL
Track forecast error in high (low)-res is about 62% (72%) smaller than that in OFCL
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Overview of Simulations (HH)

e Potential temperature perturbation field at the surface overlaid by

wind velocity and sea level pressure
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Potential Vorticity

* Potential vorticity is combination of absolute vorticity w, projected on
normal to the potential pressure surface n, and the surface
temperature 8, (Montgomery & Shapiro, JAS 52, 1995; Schneider et al., JAS 60, 2003):

Qs=—g (fk + VUX’U) Ny O
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* The sign of the meridional gradient of potential vorticity can be
informative about the direction of the hurricane movement
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Meridional gradient of the Surface Potential Vorticity
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Meridional gradient of the Surface Potential Vorticity
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Baroclinic Instability

* Necessary condition of baroclinic instability in the continuous/layered
stratified flows (as in Pedlosky, JAS 21(2), 1964a; Pedlosky, JAS 21(4), 1964b):
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* Since o > 03 in the potential pressure coordinates in the atmosphere,
s,
we need to have ua_Q <0
Y

to hold the necessary condition of baroclinic instability.




Baroclinic Instability
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Precipitation (mm)

* Resolving convective cumulus precipitation improves the accuracy of locations
and magnitudes of maximum rainfall.
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Precipitation (mm)

* Patterns in the high-resolution case are comparable to those from gauge data.

NOAA gauge-corrected
precipitation
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WRF+ADCIRC (One-way coupled model)

* High-resolution WRF outputs (surface pressure, U10 and V10 velocities
& precipitation) are used in ADCIRC model for storm surge estimates
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WRF+ADCIRC (Coupled Model)

e Surface elevation in WRF+ADCIRC compared with NOAA gauge data.

* To include precipitation effects.
* To employ ML to improve correlation coefficients & integral time.

Good results! Poor results!
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Summary

* High-resolution simulations can enhance our understanding of hurricane
dynamical processes and cyclone tracks.

» Patterns for precipitation rates/rainfall are skillfully resolved at high-resolution
simulations.

* High-resolution meteorological products will improve storm surge estimates in
hydrodynamical models (coupled models).
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Conclusions/Future Work

* High-resolution atmosphere simulations can help to improve our understanding
on dynamical processes of the hurricane movement and to enhance model
accuracy using state-of-the-art scale-aware parameterization in coarse-resolution

simulations.

 Whether simulations with higher resolution (sub-kilometer grid spacing) can be
useful to improve hurricane forecasts? Resolving KH waves, internal waves,

clouds, microphysics, ....

 To develop a coupled atmosphere-ocean-coastal model including the Wind-
Evaporation-SST (WES) interaction (WRF-ADCIRC-SWAN-MOMS6).
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Coupled Atmosphere-Ocean-Coastal model

e WRF-MOMG6-ADCIRC with the Wind-Evaporation-SST (WES) interaction

L LU VU+ fkxU =2V (P + pgr*) + = (TS_ b+VM+VD>’
ot p H p

on Q,

— +V-(UH)+0o(n—-n)=R -V-(UH) - .

- (UH)+o(n—n,) =R, (U,H) e,

Baroclinic Ocean
Forcing

Atmosphere / i

Anthropogenic
Forcing

19



Hurricane Harvey: Simulation

Model Setup
* A High-resolution configuration for Gulf of Mexico region is developed

in the WRF mesoscale model to study Hurricane Harvey.

Details
* The configuration includes resolutions of Ax = 1.67 km and Ax =

5 km for the nest and main domains, respectively.

e Forecast for 132-hours (5 days + 12 hrs) of Hurricane Harvey is
nerformed. Outputs are saved at every 15 minutes.

e Potential and absolute vorticity, potential temperature perturbation,
oressure and precipitation fields are diagnosed for studying the cyclone
dynamics.




WPS for Great Lakes

High-resolution weather forecasting for weather extremes
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Surface Temperature
e Surface temperature indicates severe cold weather on Feb 3 in the GL.
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Precipitation Rates (mm/hr)

* Precipitation rate significantly increases over Ontario lake and Erie.

Feb 2, 03:30:00  Feb3,12:30:00
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Total Precipitation (mm/hr)

To study precipitation
rates (moisture
dynamics) enhanced by
surface temperature
extremes ...
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Rate for Snow & Ice precipitation (mm/hr)
* On Feb 6, snow & ice rates are mainly important at North of 49°N.
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Accumulated Precipitation

e Total precipitation is heavier over Superior, Ontario, Huron lakes.
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