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Ocean wave reconstruction ClassNK .

Observational data Spatio-temporal data of wave
Radar, Buoy, Stereo Camera...

Data
assimilation
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Benetazzo et al. (2015) il 1700 x [m]

1. Surveillance of sea waves
 Deterministic Sea Wave Prediction (DSWP)
« For marine operations and wave energy converters (WEC)
* Moderate sea
2. Investigation on freak wave occurrence
* For maritime accident survey
* Rough sea < This study's objective
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Previous study on ocean wave reco

nstruction ClassNK .

* Fujimoto & Waseda (2020) proposed a
method to construct wave field from a

limited amount of observational data.

Surface Wave reconstruction using the
Ensemble Adjoint-free Data assimilation

method (SWEAD). It was applied to a field

measurement.

 Waseda et al. (2021) estimated the wave field
outside of observational area by SWEAD.
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Stereo camera mounted on an observational tower

in Japan coast measured wave propagation
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Two key elements of SWEAD ClassNIK

« Higher Order Spectral Method (HOSM*) y : Observational data
* Phase-resolved method which solves the ~ — ]
Euler equations by spectral method | W\ INTTTIRI LT TON  TT AR TR T YR
« Widely applied for freak wave studies 4] LA L LR A R
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« Ensemble-based variational method Time feoc

A(x) : Model (HOSM) estimation
— The cost function can be defined as the

1
squared-error between observation and L(x) = E |A(X) — y”2

model prediction. , ..
x: Fourier coefficient of

— Variational Method optimizes it to initial surface elevation
estimate the physical state like initial

condition * Dommermuth & Yue (1987), West et al (1987)

CHARTING THE FUTURE @S 4




Variational method ClassNK .

« If the x is optimal, the gradient of cost function

should be zero.

 To calculate the gradient, adjoint method, a Minimum Condition
major variational method, differentiates all VL(x) =A"(Ax) —y) =0
formulation of physical models. ﬁ

* Implementation cost is large. Adjoint code calculate

* Ensemble-based method uses numerical the adjoint matrix

differentiation by perturbed model simulation.

— Easy to implement and parallelize
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Perturbed HOSM simulation ClassNK .

The initial value perturbation v,

Cosine or sine wave Corresponding the model perturbation §Y™
g
- |
«
W “o 2 p Timee}[lsec] 80 100 120
0 50 100 150 200 250 300 HOSM
X, Initial surface elevation A(Xn + gv(m)) Model estimation
o ot L -
"o S /\k\ \ ‘ FAN & \‘ M| ‘|||n ARw i s ||||\ Uil
X 0.05/ N V ‘I“(' W\ '\f'J M/\vﬂ 0HM'J”|‘|"M|H'J\J||‘H\ |n“||“luﬂnlll./l'“'fl |||‘|;'H|l\‘||||| h‘ ||”|'|H' |"|| ||'||||‘||\|| '||Mm“”|‘ -
] ‘u“ | I | | | | | *
Position Time
1 A: Jacobi i
_ _ ~ : Jacobian matrix of
SY(m) = - {A(Xn + &'V(m)) A(Xn)} ~ AV(m) .
, the cost function
Matrix form 8Y = AV
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Ensemble-based Variational method ClassNIK
e The minimum condition of the cost function

Minimum condition
V*VL(w,)) =V'A*"(Ax+w,,) —y)
=8Y"(A(xX) + 8Yw,, —y) =0

can be written with V.

* Increment for next iteration is expressed by

linear superposition of V.

X =X, + Vw
n+1 n n o 8Y* 8Yw, = —8Y"(A(x,) — y)

« Weighting coefficient wy, can be obtained by

solving the linear equation on the right side.

« How to generate perturbations V is important

for optimization efficiency.

« SWEAD used Fourier mode.
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Predictable Zone Theory ClassNK

« By the way, in dispersive waves like deep-

water waves, the dispersion relationship Slowest group velocity Cg,
confines the predictable zone for a limited ‘) - "
amount of observational data. T g

 The observational data is time series, the C, C
predictable zone is a parallelogram . = O X
surrounded by the slowest and the fastest ’

wave components. Fastest group velocity Cgp,

* Fourier mode is global basis and might be

redundant for a limited predictable zone. Guangyu Wu, MIT Ph.D. Thesis (2004)

@
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Predictable Zone in Directional Wave ClassNK .

« The directionality also confines the =t
predictable zone. T~
. . . . . 7
* If the observational data is limited in \/\ e
spatial extent, predictable zone is also / \
limited. ff,fi\*"’
N\
\"x
g
wave /
/
/

Qi et al. (2018)
Predictable zone for phase-resolved reconstruction
and forecast of irregular waves - ScienceDirect
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https://www.sciencedirect.com/science/article/abs/pii/S0165212517301518
https://www.sciencedirect.com/science/article/abs/pii/S0165212517301518

Objective: Dimension reduction of data assimilation ClassNK .

* In reality, predictable zone is narrower Waseda et al. (2021)

than spatial domain of HOSM simulation. 7 at time=0
2500 c —
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10.4

* ldea of this study

2000 §9-3

— Identify the predictable zone to find

0.2

0.1

most effective initial value 1500

Yim]

perturbation for computational
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efficiency. .,,, 0.2
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ClassNK .

PREDICTABLE ZONE THEORY
IN AVIEWPOINT OF INVERSION PROBLEM

CHARTING THE FUTURE @S 11




Predictable Zone Theory as Inversion Problem ClassNK

To estimate a physical state from an

observational data, A(x) = y should be solved.

If the model is linear (e.g., linear water wave), y : Observational data

the equation can be written in a matrix and R ™

vector. uo WP MAT VM e
Ax =y R I

In general, the matrix A is not rectangular, and A(x) : Model estimation

x : Physical state

an ordinary inverse matrix cannot be used to (e.g., Initial condition)

obtain the solution in general.

x x=A"ly
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Singular Value Decomposition (SVD) ClassNK .

« SVD A = UXV" is a generalization of eigenvalue decomposition for

general matrix A (m#n). X cosists of a diagonal matrix and a zero matrix.

« U,V are orthogonal matrices. "Singular Vectors"

* There are singular vectors corresponding to zero singular values and

non-zero singular values V, V5. They are orthogonal to each other.

Nphys Nops — Nobs ~ Npnys
Nops A =| U Z/év 0 Vj'*
......... . { ”
Singular values Nphys — Nobs 0
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Predictable zone in viewpoint of inversion problem

ClassNK .

* By using SVD, the solution of Ax =y can be written as
x = Vi Uy + V, x.

* X is an arbitrary vector, and V x corresponds to an indefinite part of the solution.
— AV, x =UZV*V_ yx = Oy = 0 (vanishes!)
« From the observed data y, only the first term of the above equation can be

calculated; the second term is unknown owing to the arbitrary vector y.

¢ Vi, which corresponds to non-zero singular values, spans the predictable zone.

X |= | Vi

U*

Vo
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Example of SVD for linear wave w* = gk

ClassNK .

e |If the observed data is from a
water level gauge and x is the
Fourier coefficient of the initial

surface elevation, then

(A)gr = exp [i(wrtq)]

* Right singular vectors V in
red dashed line correspond to

the predictable zone.
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~Singular Vectors corresponding to the predictable zone  ClassNK

« If length of time series data is N wave period, the ([i))_RjghL singular vectors V (abs) x10°°
3 1 e W
size of predictable zone is N/2 wave length. ~ 2 : I'R:!i"‘ 3
s 7 o N
» For example, if time series length is 50 T,,, the fQT’ | : Tee: N
< Pl !
predictable zone size is 25 4, A 7 |
* This figure shows the most dominant 10 right S ;‘3";880 100 120
singular vectors, which are confined in the
predictable zone.
, 1073 | ‘ Mode #1-10 I :
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ClassNK .

UTILIZING PREDICTABLE ZONE THEORY
FOR DATA ASSIMILATION

Ensemble-based data Ensemble-based data
assimilation VS. assimilation
using Fourier modes using SVD
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Problem setting ClassNK .

At the first, a freak wave is generated T
2
« 3 order NL HOSM .
* Duration: 50 T, el | | | | |
_10 5 10 15 20 25
« JOSNWAP y=3.3 e
ot ~_Surface elevation (Truth) -
* Steepness: Hgk, /2=0.11 ARHERIETT T N\
* Reconstruct wave field from the “ AAMIITIETDTInae
A ’ NI N
. L. . 15 - —Freak wave JANNN
observational data by data assimilation — §\\ T \\
= 10 AR NN R
« Compare the true value and the s LA
g N NN
reconstructed value 5 |\ Observation iy
* Linearly Predictable Zone | ~\ N\
. control variaole \
corresponding Peak wavenumber N\ TR \
(LPZP) © 30 25 20 -15 10 5 0 5 10 15 2 25 30
X/ A
p
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Analyses in the 20th iteration

ClassNK .

« When Fourier was used, update from the linear first guess outside of LPZP is visible.
* When SVD was used, update from the linear first guess outside of LPZP is small.

Linearly Predictable Zone corresponding Peak wavenumber (LPZP)
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Data assimilation
using Fourier modes

n/HmO0
o

I I I

Truth
a. Fourier +old criteria
Linear First Guess

Data assimilation
using SVD

n/HmO
o
1

Truth
c. SVD +new criteria
Linear First Guess
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Accuracy in LPZP for each iteration ClassNIK

« Root Mean Squared-Error (RMSE) decreased with iteration by the optimization.

* The method using SVD outperformed the method using Fourier mode until 80-th iter.

« After that, the method slowed down, and the method using Fourier mode was better.

0.22
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0.18
2016+
i
0.14
012}

0.1

—a. Fourier +old criteria

(A) --=-b. Fourier +new criteria
-------- c. SVD +new criteria
- = d. SVD +new criteria +Jacobian update
___e. SVD +new criteria +Jacobian update
R +Hessian orthogonalization
- SVD and neglecting nonlinearity
“— Fourier modes
0 20 40 60 80 100
[teration
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Accuracy in LPZP for each iteration ClassNIK

* The reason why the method using SVD slows down is that it neglects nonlinearity.

« We devised a method including nonlinearity for SVD, and the method was more

efficient than the method using Fourier modes.

—a. Fourier +old criteria '
(A) e poumen sa cictang, Propagatlor) speed of Stokes wave
022 | c. SVD +new criteria increases with the steepness
- = d. SVD +new criteria +Jacobian update W 1
0.2/ % ___e. SVD +new criteria +Jacobian update —=14= (ak)z
i N +Hessian orthogonalization k _ 2
018+ \ T
Ll e ak: Steepness
7)) e
=016  \Yvuw. TN e
| e i i -
018 NI TN - SVD and neglecting nonlinearity
0.12+ “— Fourier modes
0.1 | ' ﬂ 1 “— SVD and including nonlinearity
0 20 40 60 80 100 =

[teration
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Analyses in the 100th iteration ClassNKK .

Black dotted line --: Truth
Gray solid lines: Analysis (different realization of noise added to the observation)

Original position of wave group leading to the freak wave at the initial time
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« By the new method, the freak wave was reproduced well.
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Conclusion ClassNIK .

 This study proposed a new method using SVD to generate
perturbations only in the predictable zone.

* We also devised a method including nonlinear dispersion, and the
method is more efficient than the method using Fourier modes.

— For the detail of the method, please check the following paper

* Fujimoto, W., and K. Ishibashi. 2023, Ensemble-based data
assimilation for predictable zones and application for non-
linear deep-water waves, Front Mar Sci, 10, .

 Future issues: validation by tank tests and field measurements.
Thank youl!
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https://www.frontiersin.org/articles/10.3389/fmars.2023.1125342/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1125342/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1125342/full
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