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In-situ observations of ocean waves

e Bosch 1 Cortor et I
———

e

T A T e i SR B




In-situ observations of ocean waves




Tidal signatures in wave records
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Tidal signatures in wave records
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Overview

Modulation in wave records related to inertial
currents, diurnal winds, and tides are observed in
buoys across the US coasts. \

Wave-tide interactions can strongly influence the
observed nearshore surface wave variability but is
often not resolved in operational wave forecasts.

The interaction between waves and tide is
characterized in a case study at Fernandina Beach,
FL to demonstrate how the modulation can be
explained by assuming the tide modulates the
surface waves through a long-wave short-wave
interaction.




How do tides impact surface waves?

» Observations of tidal variations in surface waves up to 50% in
deep water and coastal environments. 1
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+ Observations have shown wave heights increase on both
following and opposing tidal currents. (e.g. Davidson 2008,
Gemmrich and Garrett 2012, Wang & Sheng 2018).




Case study: Observations of significant tidal modulation at Fernandina Beach, FL.
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Oscillation near peak of the spectra & periodic change in wave steepness
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Periodic change in wave steepness
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On opposing currents, waves decrease amplitude and increase period
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On opposing currents, spectra shifts to lower frequency and energy
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On opposing currents, spectra shifts to lower frequency and energy
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On opposing currents, spectra shifts to lower frequency and energy
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Resolve complexity and IRL behavior, higher computational costs

lified idealized solutions to build intuition
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Simplify to interaction between tidal wave and surface wave

We use simplified analytical and numerical solutions to the equations of geometrical optics and
conservation of wave action under the assumption of a tide acting as a progressive monochromatic
shallow water wave — accounts for both the temporal and spatial variation of the tidal forcing terms,
and effectively treats the problem as a long-wave short-wave interaction.
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Simplify to interaction between tidal wave and surface wave

We use simplified analytical and numerical solutions to the equations of geometrical optics and
conservation of wave action under the assumption of a tide acting as a progressive monochromatic
shallow water wave — accounts for both the temporal and spatial variation of the tidal forcing terms,
and effectively treats the problem as a long-wave short-wave interaction.

We find that surface waves will be amplified by the tide:
O When A, or Ay, is relatively large
U When surface waves propagate in the direction of the tidal currents

O When the speed of surface waves propagation nears the speed of
the tidal wave
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Solutions to the simplified model

1D approximation assuming that the currents, waves,
w1 and tide propagate in the same direction

long wave
initial Ct shifted
condition forcing spectrum
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Solutions to the simplified model: long wave is slow / non-existent
Reproduce behavior expected from Doppler shifting or internal waves.
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Solutions to the simplified model: long wave is now the tide
Reproduce behavior observed at Fernandina

Here the speed of the long wave
is faster than that of the surface

waves, ¢; = +/ghy > ¢,
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Solutions to the simplified model:
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Solutions to the simplified model: direct comparison to observations

0.6 T T T T

-------- observed H,

modeled H,




Characterizing periodic variations in CDIP16?- CLATSOP SPIT, OR
nearshore wave records il =1 TR e e




Summary

This work uses a simplified idealized model to explains surface wave

tidal modulation in a nearshore environment through long-wave

short-wave interaction to

- estimate change in omnidirectional wave spectra due to tide,

- predict observed tidal variations in bulk parameters and higher
order moments at Fernandina Beach.

We seek to further characterize the tidal variability in wave records
iIn US coastal waters and explore deviations from the simplistic
model under complex tidal and wave climates.

Ho, Merrifield, & Pizzo (2023). Wave-Tide Interaction for a Strongly Modulated Wave Field,
Journal of Physical Oceanography. https://doi.org/10.1175/JPO-D-22-0166.1

Ho et al. (in prep). Characterizing tidal modulations in nearshore wave records. Email: aho@ucsd.edu
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