

Wave modelling and field measurements in a complex estuary

P. Oosterlo, G.Ph. van Vledder, B. Hofland, J.W. van der Meer, N. Geleynse, M. Reneerkens, G.J. Steendam, M. Veendorp

Area of interest: Eems-Dollard estuary

Hoogwaterbeschermingsprogramma 2

Field measurements Eems-Dollard

12-year long project

- Combining extensive field measurements and numerical modelling
- Reducing uncertainties in design conditions and improving safety assessment modelling systems

3

Field measurements Eems-Dollard

Onshore wave measurements

- Measuring wave run-up and overtopping
 - Innovative wave overtopping tanks
 - Innovative laser scanner system

Storm 8-1-2019

Waterschap Noorderzijlvest

Hoogwaterbeschermingsprogramma

Focus & Approach

- Focus on evolution of waves as they propagate into the estuary
- Previous research:
 - Possible fundamental limitations in linear refraction approach in phase-averaged models in areas with steep slopes
 - Diffraction, wave tunnelling, nonlinear effects may play a role
- Approach:
 - From simple to complex, gradual build-up in model complexity
 - Gain insight into which processes play a role
 - Comparison phase-averaged (SWAN) vs. phase-resolving model (SWASH)
 - When available, comparison and validation with measurements

SWAN versus SWASH

	SWAN	SWASH
Model type	Phase-averaged	Phase-resolving
Equations	Wave action balance	NLSW equations
Propagation	x	x
Diffraction	(x)	x
Reflection	x	x
Transmission	x	x
Wave growth by wind	x	
Dissipation	x	x
Nonlinear interactions	x	x

SWAN & SWASH models

• SWAN:

- Stationary mode
- (Initially) 20 m grid cell size
- 3 versions of the 3rd-generation physics:
 - Van der Westhuijsen et al. (2007) 200
 - Komen et al. (1984)
 - Rogers et al. (2012) (ST6)
- Variations in:
 - Grid cell size
 - No. directional bins •
 - **Diffraction approximation**
 - **Stop criterion**

• SWASH:

- Non-hydrostatic mode Model bathymetry
 - 2 vertical layers
 - Weakly reflecting b.c.'s & sponge layers
 - Dike schematised with exception values
 - Increase in applied H_s necessary
 - Calculations on Dutch national supercomputer Cartesius
 - Several issues encountered \rightarrow Fixed in newest SWASH version (6.01)
 - Choice of spectral estimation method

important

Monochromatic, unidirectional waves

- Focus on wave propagation, excluding other physical processes
- $d = 18.5 \text{ m}, H = 3 \text{ m}, T = 6 \text{ s}, \theta = 270^{\circ}$

Monochromatic, unidirectional waves

Relative wave height compared to Sommerfeld (1896) solution

Irregular, directional waves

- Focus on wave propagation, excluding other physical processes
- $d = 18.5 \text{ m}, H_s = 3 \text{ m}, T_p = 6 \text{ s}, \theta = 270^{\circ}, \text{ dspr} = 25^{\circ}$

Irregular, directional waves

• Relative wave height compared to Goda et al. (1978) solution

Irregular, directional waves

Comparison 2D wave spectra SWASH & SWAN

Focus on wave propagation effects only

• $d = 18.5 \text{ m}, H_s = 3.4 \text{ m}, T_p = 6 \text{ s}, \theta = 279^{\circ}, \text{ dspr} = 30^{\circ}$

• Partial reflection by porous grid cells

Focus on wave propagation effects only

Comparison 2D wave spectra SWASH & SWAN

15

Focus on all physics, except wind

• All physical processes except wind growth turned on

Focus on all physics, except wind

Comparison 2D wave spectra SWASH & SWAN

Conclusions

- 12-year long extensive field measurements in, and numerical modelling of the estuary
- Phase-averaged models cannot cope with diffraction and unidirectional waves
- Performance for **directionally spread waves** is much better
- All physics, no wind: HF peak missing in SWAN, SWAN gives larger H_s, smaller Dspr
- Current case: only **quadruplets** and **whitecapping** of influence

Ongoing and future work

- Field measurements and further studies ongoing for at least 10 more years
- Continuation of measurements and analyses of oblique wave run-up and overtopping
- Next steps in wave modelling of the area:
 - Tests with XNL quadruplets (see also H2, Van Vledder)
 - Influence of wind
 - Adding shallow area and slope to model
 - Adding channel to model
 - Modelling with actual bathymetry
 - Comparison and validation with measurements whenever available

Thank you

Animations by Ricardo Alanis & Patrick Oosterlo https://www.artstation.com/patomico

TUDelft

