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INTRODUCTION: Motivation, Background, 

& Objectives
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https://www.wthr.com/article/hurricane-matthew-strengthens-as-it-nears-florida
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ObservationsTheory
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Background Review
Vertical Structure – theory and observations.

Wind induced circulation in the nearshore open coast due 

to longshore winds, and the response in the current 

vertical structure.

Burnette and Dally (2017)
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Objectives

1. Implement turbulent closure equations within a 2-Dimensional Vertically-

Resolving (2DVR) hydrodynamic model for coastal applications;

2. Implement depth averaged momentum and mass conservation equations 

within a 2DDI hydrodynamic model for coastal applications;

3. Make comparisons of the differences in surge estimation from 2DDI and 

2DVR storm surge estimation simulations; 

4. Investigate an effective means of including the 2DVR vertical momentum 

fluxes into the 2DDI codes and;

5. Suggest application of simple method for including 2DVR surge estimation 

solutions into a 2DDI model.
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METHODS: Development of 

Numerical Simulations
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2DVR Numerical Approach

• Vertical Momentum Equations (2) & (3)
• Assume advection can be neglected; 

• Assume vertical momentum gradient >> horizontal momentum gradient

• Assume the surface slope inversely defines the pressure gradient

• Initial Conditions:
• Assume initial condition u & v = 0

• Assume initial condition surface slope & pressure gradient = 0

(2)

(3)

( ) ( )
[ ]w w

eff w w

u u
f v g

t z z x

  
  

  
= + −

   

 ( ) ( )
[ ]w w

eff w w

v v
f u g

t z z y

  
  

  
= − −

   



UF
UNF

7

2DDI Numerical Approach

• Vertical Momentum Equations (17) & (18)
• Assuming constant density

• Neglecting advection

• and average the tangential stress components.

• Initial Conditions:
• Assume initial condition u & v = 0

• Assume initial condition surface slope & pressure gradient = 0

H

(17)
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Finite Difference Method (FDM)

• The FDM presented here uses the continuity and momentum 
conservation equations, and is similar to the method 
presented in Buttolph, et al., 2006. 

• Explicit method
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INVESTIGATION:
Numerical Test Cases 

& Analysis of Vertical 

Structure

9



UF
UNF

10

Numerical Test Cases, & Analysis of Vertical 

Structure

Investigation:

NOTE: The wind parameter can represent both wind-
driven and wave-driven surges.

THEREFORE: The nearshore region in this work 
represents an idealized open coast with constant bottom 
slope, spanning from a few to tens of meters in depth.

Though wind-driven currents are the focus of this work, 
it can be inferred that similar results would be found if 
waves are included as an equivalent wind stress. 

Investigation:(5)

(6)

 2 cos( )ax w aC W  =

 2 sin( )ay w aC W  =

Where, if 
𝜕𝑀𝑜

𝜕𝑥

𝜕𝑥

𝜕𝑡
=

𝐸(𝑓,𝜃)𝐶𝑔��׭

𝜕𝑥𝐶
𝜕𝑓𝜕𝜃 then;

(5)

(6)

2 cos( ) o
ax w a

M
C W

t
  


= +



2 sin( ) o
ay w a

M
C W

t
  


= +





UF
UNF

11

24 selected simulations from test case 1:

(a) Simulated wind speed of 5, 10, 20, and 40 m/s 
blowing at a -45 degree angle onshore at 5 meters.

(b) Simulated wind speed of 5, 10, 20, and 40 m/s 
blowing at a -45 degree angle onshore at 30 meters.

(c) Simulated wind speed of 5, 10, 20, and 40 m/s 
blowing at a 0 degree angle onshore at 5 meters.

(d) Simulated wind speed of 5, 10, 20, and 40 m/s 

blowing at a 0 degree angle onshore at 30 meters.

(e) Simulated wind speed of 5, 10, 20, and 40 m/s 
blowing at a 45 degree angle onshore at 5 meters.

(f) Simulated wind speed of 5, 10, 20, and 40 m/s 
blowing at a 45 degree angle onshore at 30 meters.

TEST CASE 1

2DVR Bottom Stress Solutions for Idealized Cases (Latitude = 0)
with model run time of 3 hours (dt = 0.5 sec)
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Results showing the surface surge

calculated at steady state generated

for

vertically resolved - depth averaged

These runs were made from 30 to 5

meters of depth, for 4 different wind

speeds, and 9 different wind angles.

2DVR Bottom Stress Solutions for Idealized Cases (Latitude = 0)

TEST CASE 2

Approx. 24.1% additional storm surge.

8.40 m - 6.77 m

13% 68% 
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TEST CASE 3

2DVR Bottom Stress Solutions for Idealized Cases (Latitude = 0)
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Difference = 0.0046932 m

0.0089192 m 0.013612 m

Diff/2DDI =  0.5262

TEST CASE 3
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APPLICATION: Implications to 2DDI 

Surge Models
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Scaled Analysis

(a) (b)

(c) (d)

(e) (f)

The maximum velocity, at the top 

layer of the water column, is used to 

non-linearize the velocity profile 

through depth, for wind speeds of 5, 

10, 20, and 40 m/s (where darker 

lines represent higher speeds), and 

a wind direction of 45 degrees. 

2DVR Bottom Stress Solutions for Idealized Cases (Latitude = 0)

Where;

(a) 5m

(b) 10m

(c) 15m

(d) 20m

(e) 25m

(f) 30m

There is an approximate difference 

between

and

at                               .

 0.35*  max velocity−
 0.4*  max velocity−

 0.85*  water depth
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Multivariate Analysis – Principal Component Analysis

Depth: 5m & Winds: 20 m/s @ 0ᵒ Onshore

Run Time: 0 to 120 min (14400 Timesteps, dt = 0.5 sec)
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Depth: 5m & Winds: 20 m/s @ 0ᵒ Onshore

Run Time: 0 to 15 min (1800 Timesteps, dt = 0.5 sec)

Multivariate Analysis – Principal Component Analysis
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Depth: 5m & Winds: 20 m/s @ 0ᵒ Onshore

Run Time: 15 to 30 min (1800 Timesteps, dt = 0.5 sec)

Multivariate Analysis – Principal Component Analysis
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Example Look Up Table (latitude = 0)

Bottom Stress solution for estimated wind speeds and wind directions at 5 meters depth.

Where (right) is the magnitude of the stress component and 

(left) is the direction of the stress component.

2DVR Bottom Stress Solutions for Idealized Cases (Latitude = 0)
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Test Case 3 – with VR Look Up Table
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VR Bottom Stress for 

Idealized Cases

(Latitude = 0)

Example of bottom stress solutions for 

estimated wind speeds and wind 

directions by the steady state 2DVR 

numerical simulation at a depth of 5m. 

Where;

(a) is bottom stress in the along-shore

direction and 

(b) is bottom stress in the cross-shore 

direction.

Latitude was set to zero in these 

numerical simulations, to ensure 

symmetry in the solutions, for validation 

purposes.

2DVR Bottom Stress Solutions for Idealized Cases (Latitude = 0)

(a)

(b)
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CONCLUSION: Findings, Discussion, & 

Future Work

23

Bottom stress concepts in 2DDI surge models neglect the vertical current structure, which often 

varies significantly in direction and magnitude of the stress associated with the mean current. 

By applying improved bottom stress physics in the boundary layer approximation, it is likely that 

the need to refine and adjust models on a storm by storm and location by location basis will be 

reduced.

It appears that 2DDI models combined with the vertical structure numerically simulated in this 

investigation will be sufficient for accurate results in most coastal storms, whereas 3D and quasi-

3D model configurations are typically too coarse (due to computer restraints) to resolve the 

bottom boundary layer effectively.
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Why Bottom Friction Matters:

Depth Resolved: 

𝑈𝑠
2 = 𝐶𝑑

𝜌𝑎
𝜌𝑤

𝑈2 ∗ 𝐶𝑏𝜌𝑎𝑈𝑏
2

Depth Averaged: 

𝑈𝑠
2 = 𝐶𝑑

𝜌𝑎
𝜌𝑤

𝑈2


	Slide 1 
	Introduction:
	Slide 3 
	Slide 4 
	methods:
	Slide 6 
	Slide 7 
	Slide 8 
	Investigation:
	Investigation:
	Test Case 1
	Test Case 2
	Test Case 3
	Test Case 3
	Application:
	Slide 16 
	Slide 17 
	Slide 18 
	Slide 19 
	Slide 20 
	Slide 21 
	Slide 22 
	Conclusion:
	Thank you
	References
	References
	References
	References

