NEW ZEALAND WAVE CLIMATE VARIABILITY BASED ON WEATHER PATTERNS

ANA RUEDA, LAURA CAGIGAL, JOSE A. A. ANTOLÍNEZ, GIOVANNI COCO, JOAO ALBUQUERQUE, FERNANDO MÉNDEZ

1st International Workshop on Waves, Storm Surges and Coastal Hazards, Liverpool, Sept. 2017

MOTIVATION

"Climate change impacts on weather-related coastal hazards" project funded by MBIE^{*} How do they change over time?

Would it be possible to perform a robust statistical relationship between waves and storm surge with atmospheric variables at a national scale?

*Ministry of Business, Innovation and Employment

PREVIOUS WORKS

Map data @2017

NEW ZEALAND WAVE CLIMATE ANALYSIS

Pickrill and Mitchell (1979) – 17 years obs. Laing (1993) – 5 months wave hindcast Laing (2000) - 13 y. from radar altimeter Gorman et al.(2003a,b) - 20 y. wave hindcast Godoi et al. (2015) - 45y. Wave hindcast Coggins et al. (2016) - 29y. Wave hindcast

MEAN Hs

Correlations with

(m)

Climate Modes

TAILOR-MADE INDICES

TAILOR-MADE INDICES

WAVE DATA

- GlobWave database
- Ifremer wave reanalysis

PCA correlation

WEATHER PATTERNS

CFSR reanalysis 1993-2012

WEATHER PATTERNS – WAVES

MEAN ANOMALY

WEATHER PATTERNS – WAVES

WAVE DATA

- GlobWave database
- Ifremer wave reanalysis

WEATHER PATTERNS – STORM SURGE

SURGE DATA: DAC Reanalysis

(m) 0.1 0.08 0.06 - 0.04 - 0.02

0

-0.02 -0.04 -0.06 -0.08 -0.1

ANOMALY 99%

INTERANNUAL VARIABILITY •

ZW3

-2 < SAM > 2

ZW3 < -0.5

-0.5 < ZW3 > 0.5

SOI < -1

-1 < SOI > 1

CFSR

20CR

20CR

GCMs' skills (on-going work)

SUMMARY

- We have defined a regional daily atmospheric predictor for waves and storm surges along NZ coasts.
- This regional predictor is able to explain wave climate variability at daily, intramonthly, seasonal and interannual time-scales.
- The use of clustering techniques simplifies the analysis of multivariate problems such as coastal flooding and erosion.
- The statistical-relationship established between waves and storm surge with slp fields, allows its application for climate change projections.
- The skill of GCMs should be analyzed carefully!!

THANK YOU FOR YOUR ATTENDANCE!

NEW ZEALAND WAVE CLIMATE VARIABILITY BASED ON WEATHER PATTERNS

ANA RUEDA, LAURA CAGIGAL, JOSE A. A. ANTOLÍNEZ, GIOVANNI COCO, JOAO ALBUQUERQUE, FERNANDO MÉNDEZ

ruedaac@unican.es

1st International Workshop on Waves, Storm Surges and Coastal Hazards, Liverpool, Sept. 2017

			III III III III III III III III III III III III III III III III III III III III III IIII IIII IIII IIII IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
DJF	MAM	JJA	SON
	Image: state		

HISTORICAL PROBABILITIES 1979-2009

