NEW ZEALAND WAVE CLIMATE VARIABILITY BASED ON WEATHER PATTERNS

ANA RUEDA, LAURA CAGIGAL, JOSE A. A. ANTOLÍNEZ, GIOVANNI COCO, JOAO ALBUQUERQUE, FERNANDO MÉNDEZ

1st International Workshop on Waves, Storm Surges and Coastal Hazards, Liverpool, Sept. 2017
“Climate change impacts on weather-related coastal hazards” project funded by MBIE*

Would it be possible to perform a robust statistical relationship between waves and storm surge with atmospheric variables at a national scale?

*Ministry of Business, Innovation and Employment
PREVIOUS WORKS

Pickrill and Mitchell (1979) – 17 years obs.
Laing (1993) – 5 months wave hindcast
Laing (2000) – 13 y. from radar altimeter
Gorman et al. (2003a,b) – 20 y. wave hindcast
Godoi et al. (2015) – 45y. Wave hindcast
Coggins et al. (2016) – 29y. Wave hindcast

GOALS:

• To find a regional atmospheric predictor of waves and storm surges reaching NZ coasts.
• To analyze wave climate variability at daily, weekly, seasonal and interannual scales.
• To develop a framework for climate change projections.

NEW ZEALAND WAVE CLIMATE ANALYSIS

Correlations with Climate Modes
ESTELA: a method for evaluating the source and travel time of the wave energy reaching a local area. (Perez et al. 2014a)

Following (Hegermiller et al. 2016)
With CFSR SLP fields of 2º resolution from 1993 to 2012
TAILOR-MADE INDICES

PCA correlation

WAVE DATA

- GlobWave database
- Ifremer wave reanalysis

EOF1 - var=9.93 %

EOF2 - var=5.72 %

EOF3 - var=5.02 %

p_{HS}
LINEAR REGRESSION: VALIDATION PERIOD

Validation 2006-2012 estela PCs-13days+1day Fe NZ cent estela 0 NW Mean

Validation 2006-2012 estela PCs-13days+1day Fe NZ NW estela 0 NW Mean

Validation 2006-2012 estela PCs-13days+1day Fe NZ SW estela 0 NW Mean

Validation 2006-2012 estela PCs-13days+1day Fe NZ North estela 0 NW Mean

Validation 2006-2012 estela PCs-13days+1day Fe NZ South estela 0 NW Mean

Validation 2006-2012 estela PCs-13days+1day Fe NZ SE estela 0 NW Mean
WEATHER PATTERNS

MEAN SLP

CFSR reanalysis 1993-2012

K-MEANS
WEATHER PATTERNS - WAVES

WAVE DATA
- GlobWave database
- Ifremer wave reanalysis

WT1 WT5 WT9 WT13

WT2 WT6 WT10 WT14

WT3 WT7 WT11 WT15

Hssea/Hstotal
Tm Swell (s)
WEATHER PATTERNS – STORM SURGE

SURGE DATA: DAC Reanalysis

ANOMALY 99%
TIME-SCALES OF VARIABILITY

• SEASONALITY

AUSTRAL SUMMER CONDITIONS

AUSTRAL WINTER CONDITIONS
TIME-SCALES OF VARIABILITY

- **Madden Julian Oscillation (MJO)**
TIME-SCALES OF VARIABILITY

- INTERANNUAL VARIABILITY
TIME-SCALES OF VARIABILITY

CFSR

20CR
TIME-SCALES OF VARIABILITY

20CR

Compo et al. 2011
GCMs’ skills (on-going work)

Sorted out by performance to model synoptic situations based on Perez et al. (2014b)
SUMMARY

• We have defined a regional daily atmospheric predictor for waves and storm surges along NZ coasts.

• This regional predictor is able to explain wave climate variability at daily, intramonthly, seasonal and interannual time-scales.

• The use of clustering techniques simplifies the analysis of multivariate problems such as coastal flooding and erosion.

• The statistical-relationship established between waves and storm surge with slp fields, allows its application for climate change projections.

• The skill of GCMs should be analyzed carefully!!
NEW ZEALAND
WAVE CLIMATE VARIABILITY
BASED ON WEATHER PATTERNS

ANA RUEDA, LAURA CAGIGAL, JOSE A. A.
ANTOLÍNEZ, GIOVANNI COCO, J OAO
ALBUQUERQUE, FERNANDO MÉNDEZ

THANK YOU FOR YOUR ATTENDANCE!

ruedaac@unican.es

1st International Workshop on Waves, Storm Surges and Coastal Hazards, Liverpool, Sept. 2017
HISTORICAL PROBABILITIES 1979-2009