

North East Wales

ABERGELE

Previous flooding

5th December 2013

Peak Offshore Conditions

skew surge = 0.88m

sea level = 5.43mAOD

Hs = 4.58m

Tm = 6.58s

direction = 285°

<u>Damage</u>

- 170 homes flooded
- 400 people evacuated
- 4 casualties
- 5 electrical fires

2013 flood maps didn't include the threat from overtopping

Photo: Craig Colville

New Study

Method

Multi-variate statistical analysis of water levels and offshore wave and wind conditions.

Produce Monte Carlo

Produce Monte Carlo sample representing 10,000 years

Overtopping

Calculate return periods

Statistics

Multi-variate statistical analysis

Marginal Modelling: Hs, Tm, wind speed and skew surge

Describe the distribution of each variable independently

Distributions were fitted so as to replicate the physical limits of this location:

- Wind speed upper end point: bottom of hurricane scale (33 m/s)
- Wave height & period upper end point : consistent with British Standard nomograph

Multi-variate statistical analysis

Dependence Modelling

Find the relationship between variables
Used the Heffernan & Tawn dependence model

Multi-variate statistical analysis

Monte Carlo sample

Create a Monte Carlo sample of offshore conditions with the same properties as the observed data. This sample represents 10,000 years.

Future Risk: changing offshore climate

- Waves are fetch limited
- Future wave and wind climates were not changed

 Sea level rise applied before waves were transformed into the nearshore

Epoch	2017	2067	2092	2117
MSL increase (m)	0	0.41	0.71	1.08

Numerical Modelling

Wave Transformation Modelling

- SWAN
- Spatially varying water level grid
- 'Calibrated' against RADAR observations

Wave Emulation

- Offshore dataset represents 10,000 years includes 172,342 events
- Simulated 800 events with SWAN
- Used emulators to, transform the remaining events into nearshore conditions

Wave Overtopping

- Split coastline into 32 sections with similar defence and wave characteristics
- Calculated overtopping using Neural Network
- Calibration against flood history: hindcast

Wave Overtopping: Hindcast

Image: google.co.uk

Wave Overtopping: validation

Denbighshire County Council CCTV

Inundation Modelling

- TUFLOW and Flood Modeller (ISIS) coupled
- 2D finite difference 1D river model

Simulation of 5th Dec 2013

Using the results to manage flood risk

Managing coastal flood risk

- Study results will be used to update NRW flood warning and alert thresholds and areas
- The study outputs will also be used inline with Planning Policy Wales to prevent inappropriate development on the flood plain

Coastal Hazard Maps

