SCIENCE-BASED TOOLS FOR COASTAL ADAPTATION TO RISING SEA LEVEL

JENNY BROWN, PHIL KNIGHT, TOM PRIME, KARYN MORRISSEY & ANDY PLATER

Adaptation and Resilience of Coastal Energy Supply

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

Supporting decision making

Online map viewer for exploring plausible flood hazard to **2500 AD**.

Developed on NW region and selected nuclear case studies.

- * Sizewell (mixed beach)
- * Hinkley Point (rocky shore & cliff)
- * Bradwell (estuary)
- * Sellafield (sand beach/dune)

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

Numerical approach to flood modelling

Model setup, **Fleetwood example**

2 m LiDAR data

Filtered to 10 m

Sea defences reincorporated

Surface roughness assigned

1,000 500

2,000 Meters

Defence Section 1

Defence Section 4 Defence Section 2 — Defence Section 5

Defence Section 3 — Defence Section 6

NERC SCIENCE O

Extreme water level hazard

Source: EA, Flood boundary conditions for UK mainland and islands Project: SC060064/TR2: Design sea level (Macmillan et al., 2011)

https://arcoes-dst.liverpool.ac.uk/

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

Flood depth

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

noc.ac.uk

NERC SCIENCE OF THE ENVIRONMENT

Present day management information

Hazard ratings

Depth × (Velocity + 0.5) + Debris Factor [land use: pastoral/arable, woodland, urban]

Cost of flooding for use in cost-benefit analysis

Housing - short duration saltwater events

NER

National Oceanography Centre ATURAL ENVIRONMENT RESEARCH COUNCIL

Costs for each land use and the total area inundated

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

noc.ac.uk

NERC SCIENCE OF THE ENVIRONMENT

Fleetwood costs for each inundation scenarios for a 1 in 250 year storm tide + additional factors

Additional Factor	Area of Land Inundated (Mm ²)	Volume of Flood Water (Mm ³)	Average Depth (m)	Standard Deviation of Depth	Total Cost(£M)
None	4.26	4.6	1.08	0.96	48.87
River forcing	9.68	12.2	1.26	1.01	247.32
Wave overtopping	8.33	6.99	0.84	0.82	224.61
Wave and River	12.75	14.04	1.10	0.97	377.11

noc.ac.uk

NERC SCIENCE OF THE ENVIRONMENT

Useful visualisation for the communication of results

)	500)	1,000		2,	000 Meters
	1 1		1		1	1

Storm tide

& river

Colour of Plot	Depth Range	Brick Layers
Red Areas	>0.6 m	8+
Yellow Areas	0.3-0.6 m	4 to 8
Green Areas	0.05-0.3 m	1 to 4

Storm tide & waves

Colour of Plot	Depth Range	Brick Layers
Red Areas	>0.6 m	8+
Yellow Areas	0.3-0.6 m	4 to 8
Green Areas	0.05-0.3 m	1 to 4

Acknowledgement of operational & pre-operational safety cases

Summary

- An open-source, web-based geospatial decision-support tool (DST) has been developed by ARCoES that allows the energy sector and the wider coastal stakeholder community to explore the plausible flood impacts of future climate scenarios.
- Even with efficient storm impact models there are still limitations in the DST due to the number of factors that can be represented within a feasible number of simulations.
- Even so, the DST offers the end-user the capability to undertake a tipping-point analysis, identifying when shifts in flood prone areas could occur making the present-day management policy unsustainable.

National Oceanography Centre Natural environment research council

Adaptation and Resilience of Coastal Energy Supply

Thanks for listening

More information available on YouTube, just search for ARCoES