

Storm surge hindcasting using a fully coupled model of surge and wave - Case study of Typhoon Haiyan surge

Sooyoul Kim, Tottori University **Kenzou Kumagai**, Pacific Consultants Co. Ltd. **Hajime Mase**, Kyoto University

Ist International Workshop on Waves, Storm Surges and Coastal Hazards

Aim and Background

- * Impact of
 - Wave dependent sea surface drag (Janssen, 1989 & 1991) with levelling off
 - * Wave-current interaction induced bottom drag (Signell et al., 1990)
- * on Haiyan surge 2013
- using a coupled model of surge and wave
 - * 2 dimensional depth integrated storm surge model
 - wave model, SWAN

Content

- Wave dependant sea surface drag with levelling off
- Wave¤t interactioninduced bottom drag
- Surge simulations by SuWAT

Pacific

onsultants

- * Results
- Summary

1st international Workshop on Waves, Storm surges and Coastal Hazards 2017

The drag coefficient, $C_{\rm d}$, in sea surface layer

Pacific

onsultants

The drag coefficient, C_d , in sea surface layer

- * Wave growth term in SWAN $S_{in}(\sigma, \theta) = A + BE(\sigma, \theta)$
 - * A: the linear wave growth term
 - * BE: the exponential wave growth term

The drag coefficient, C_d , in sea surface layer

* Wave growth term in SWAN

 $S_{\mathrm{in}}(\sigma, \theta) = A + BE(\sigma, \theta)$

* A: the linear wave growth term

- BE: the exponential wave growth term
- * Cd in the linear wave growth term

* Transfer U10 to U* the friction velocity $(u_*^2 = C_D U_{10}^2)$ Wu (1982): $C_D = \begin{cases} 1.2875 \times 10^{-3} & \text{for } U_{10} < 7.5 \text{m/s} \\ (0.8 + 0.065U_{10}) \times 10^{-3} & \text{for } U_{10} > 7.5 \text{m/s} \end{cases}$ Zijlema et al (2012): $C_D = (0.55 + 2.97\tilde{U} - 1.49\tilde{U}^2) \times 10^{-3}$

The drag coefficient, C_d , in sea surface layer

Wave growth term in SWAN

$$S_{
m in}(\sigma, heta) = A + BE(\sigma, heta)$$

* BE: the exponential wave growth term

- * Janssen's wave dependent Cd in the exponential wave growth term (1991) and following Mastenbroek et al.(1993) accounting for sea state
 - * Wind profile: $U(z) = \frac{u_*}{\kappa} \ln\left(\frac{z + z_e + z_0}{z_e}\right)$ Turbulent stress $\tau_t = \rho_a (\kappa z)^2 \left(\frac{\partial U}{\partial z}\right)^2$
 - * Effective roughness: $z_e = \frac{z_0}{\sqrt{1 \tau_w/\tau}}$
 - Wind speed-capped Wave dependent Cd

Pacific

Estimated wave dependent C_d without levelling off

KYOTO UNIVERSI

The best-fitted wave dependent C_d to the 2nd-order polynomial

- Threshold for a levelling off based on measurements
 - 33 *m/s* : Powell et al.
 (2003)
 - 30-40 *m/s* : Donelan et al.
 (2004)
 - 22-23 *m/s* : Black et al.
 (2007)

Pacific

Moon et al. 2008

Levelling Wave dependent Cd off in the exponential term

* Wind profiles only in the exponential term

Levelling off in the exponential term

* Levelling off the wave dependent Cd in the exponential wave growth term $U(z) = U(z) \text{ for } U(z) < \tilde{U}_{10}$

Step functions

 $U(z) = \tilde{U}_{10} \text{ for } U(z) \ge \tilde{U}_{10}$

Wind profile

$$U(z) = \frac{u_*}{k} \ln\left(\frac{z + z_e + z_0}{z_e}\right), \text{ if } U(z) < \tilde{U}(z)$$
$$\tilde{U}(z) = \frac{u_*}{k} \ln\left(\frac{z + z_e + z_0}{z_e}\right), \text{ if } U(z) \ge \tilde{U}(z)$$

* Wind speed-capped $C_d = u_*^2 / U(z)^2 = \kappa / \ln \left(\frac{z + z_e + z_0}{z_e} \right)$, if $U(z) < \tilde{U}(z)$ Wave dependent Cd

$$C_d = u_*^2 / \tilde{U}(z)^2 = \kappa / \ln\left(\frac{z + z_e + z_0}{z_e}\right), \text{ if } U(z) \ge \tilde{U}(z)$$

(Kim et al. 2015, Ocean Modelling)

Scattered wave dependent C_d with levelling off

The best-fitted wave dependent Cd to the 2nd-order polynomial

1st international Workshop on Waves, Storm surges and Coastal Hazards 2017

The wave¤t interaction-induced bottom drag, f_c

The wave¤t interaction-induced bottom drag, f_c

- Conventional method
 - * Manning number, *n*,

$$\tau_{b} = \rho_{w}gn^{2} \frac{\vec{Q}|\vec{Q}|}{h^{7/3}} \qquad \tau_{b} = \rho_{w} \frac{f_{c}}{8} \frac{\vec{Q}|\vec{Q}|}{h^{2}}$$
$$f_{c} = 8 \times \frac{gn^{2}}{h^{1/3}}$$

Signell et al., 1990 & Davies and Lawrence, 1995

$$k_{bc} = k_{b} \left[C_{1} \frac{U_{*_{cw}} A_{b}}{U_{w} k_{b}} \right]^{\beta} \quad f_{c} = 2 \left[\frac{K}{\ln(30 z_{r} / k_{bc})} \right]^{\beta}$$

Time series of f_c

10 m water depth

Time series of Manning Number converted from f_c

10 m water depth

Averaged Manning Number converted from f_c

1st international Workshop on Waves, Storm surges and Coastal Hazards 2017

Haiyan storm surge simulations

using

1. wind speed capped-wave dependent Cd

2. wave current interactioninduced bottom drag

A coupled model of Surge, Wave and Tide (SuWAT)

- A coupled model of Surge, WAve and Tide (SuWAT, Kim et al. 2008, 2010)
 - Storm surge: 2DDI model (0.2 sec)
 - Wave: SWAN (900 sec)
 - Information exchange (900 sec) of Cd, fc, current and water level
 - FDM, structured grid (2.43 km, 810 m, 270 m and 90 m)
 - Nesting scheme (four domains)
 - Message Passing interface (MPI) between two domains
- Parametric wind and pressure model
 - Schloemer's formula (1954)
 - Fujii and Mitsuta's formula (1986)
- Tide model (ignored)

Pacific

Consultants

n : the domain level Ts : the time step in the computation Tmax,c: the end of time step for coupling runs U_{ry} : the current η : the sea surface level C_p : the wave dependent drag $F_{x,y}$: the depth averaged-wave radiation stress W: the wind SLP : the sea level pressure U_{xyobs} : the current for boundaries η_{obs} : the sea surface level for boundaries S_{abs} : the wave spectrum for boundaries $\eta_{obs, tide}$: the tide obtained from global and/or regional barotropic inverse tidal solutions of the Oregon State University Tidal Inversion Software (OTIS) η_{bottom} : the bed level

Coupling process

KYOTO UNIVERSITY

1st international Workshop on Waves, Storm surges and Coastal Hazards 2017

Highest surge levels with 25 m/s levelling off

Samar Island

Tacloban Guiuan

Field survey data (Tajima et al. 2014)

 の 局取大学 Tottori University

Comparison of highest surge levels to field survey data

Comparison of highest surge levels to field survey data

1st international Workshop on Waves, Storm surges and Coastal Hazards 2017

Consultants

Kumagai et al. 2017

Low Pressure System 2014 in Hokkaido (25 m/s levelling off)

^oRausu

Wave

Hanasaki 🖁

^o Kiritappu

Google Earth

Data SIO, NOAA, U.S. Navy, NGA, GEBOO

Kumagai et al. 2017

Further work

- Prove the idea in the exponential wave growth term physically for
 - * waves,
 - surges and
 - any other physics
- under extreme events

Pacific

Summary

- * Using the step function, the wind speed-capped wave dependent C_d was estimated
- * Wave-current interaction induced bottom f_c equivalent to approx. 0.02 of Manning Number
- * Levelling off at 25-30 m/s was proper
- * It is validated by Typhoon Haiyan surges using
 - * wind speed-capped wave dependent C_d &
 - * wave-current interaction induced bottom $f_{\rm c}$
- Validate time series of waves and surges using the present method for
 - Typhoon Irma 1985 in Tokyo,
 - * Low Pressure System 2014 in Hokkaido

Questions or comments ?

Thank you very much

