

Assessing extreme sea levels in the North Atlantic basin

Sanne Muis, Ning Lin, Martin Verlaan, Hessel Winsemius, Philip Ward & Jeroen Aerts

Areas around the world experience devastating impacts due to coastal flooding

Why assess coastal flood hazard at the global scale?

- Societal risks are increasing globally
 - Increasing number of people and assets located in the coastal zone
 - Increasing sea levels and changes in storminess due to climate change
- Global modelling can provide essential information for flood risk management
 - Global hazard and flood risk mapping
 - Project future flood risk
 - Impacts of ongoing events (anywhere)

Global model framework to assess flood risk

IVM Institute for Environmental Studies

Global modelling of storm surge

Global Tide and Surge Model (GTSM)

- Hydrodynamic model based on Delft3D-FM
- Computational power is used there where it is most needed..
 - Unstructured grid which is locally refined in shallow areas
 - Resolution ranges from 5 km in shallow areas to 50 km in deep ocean

Global Reanalysis of Tide and Surges (GTSR)

First global coastal dataset that

- based on a hydrodynamic model approach
- has been extensively validated
- provides daily time series surge, tide and total sea levels
- provides Gumbel parameters to estimate return periods

Return periods are freely available

A global reanalysis of storm surges and extreme sea levels

Sanne Muis¹, Martin Verlaan^{2,3}, Hessel C. Winsemius², Jeroen C.J.H. Aerts¹ & Philip J. Ward¹

ARTICLE

Validation of GSTR

Good agreement model and observations [1]

- Underestimation of extremes in tropical regions
- Better performance at mid-latitudes, indicated by higher correlation
 - Tropical 0.77

[1] Obtained from the archives of the University of Hawaii Sea Level Center (http://uhslc.soest.hawaii.edu)

Limitations of GTSR

Underrepresentation of tropical cyclones (TCs)

- TCs are responsible for the most damaging storm surges
- Underestimation of risk in regions prone to TCs

IVM Institute for Environmental Studies

SOURCE: NOAA National Centers for Environmental Information (NCEI) U.S. Billion-Dollar Weather and Climate Disasters (2017).

Assessing historical sea levels in the North-Atlantic

<u>Goal</u>

• To develop a data set with historical extreme sea levels, including TC surges, for the North Atlantic basin

Approach

- Need for higher-resolution meteorological forcing
- Explicit modeling of TC winds to improve the simulation of TC surge

Improved model framework to assess water levels

IVM Institute for Environmental Studies

ERA-Interim vs. EBTRCK

WIND FORCING

0

<u>IKE</u>

IRENE

<u>SANDY</u>

ERA-INTERIM EBTRCK <u>H* WIND</u> Max 10-min sustained surface winds (m/s) 40 10 20 30

ERA-Interim vs. EBTRCK

SURGE SIMULATIONS

Validation of major historical TC events

- Use of best track data performs much better than reanalysis data
- Spatial pattern coherent with NOAA tide gauges

		Katrina	lke	Irene	Sandy
EBTRCK	Mean bias (m)	-0.03	-0.25	0.19	0.06
	r ²	0.96	0.90	0.86	0.86
Era-Interim	Mean bias (m)	-0.12	-0.66	0.11	-0.18
	r ²	0.59	0.69	0.77	0.82
Number of tide gauges within		10	10	ЛЛ	24
250 km radius of the TC track		10	١Z	44	۷4

Validation of surge heights (1988-2015)

- Retrieving all observations within 250 km of the TC track results in 694 data points (~200 TCs)
- Good performance of EBTRCKS
- Merge EBTRCKS and ERA-Interim simulations by taking the highest surge height
- Slight improvement in performance

VM Institute for

Environmental Studies

	EBTRCK	EBTRCK EA-Interim
Moon biog (m)	0.04	0.06
Mean bias (m)	S.D 0.17	S.D 0.13
r ²	0.84	0.84

Scatter density

(number of data points)

Validation of total water levels (1988-2015)

- Retrieving all observations using POT \rightarrow 980 data points
- Good agreement

Maan biaa (m)	-0.19
Mean bias (m)	S.D 0.30
r ²	0.89

- Some of the observed maxima or not being reproduced by the model
 - Poorest model agreement in shallow and topographically more complex regions
 - Underestimation may be caused by exclusion of waves or problems with TC tracks

Understanding drivers of extreme sea levels

- Reanalysis of historical may help to improve understanding of extreme events
- Approach allows to differentiate between tides, ETC and TC surge as drivers of extreme sea levels

Towards assesing TC risk

- Modelling historical extreme sea show good performance
- Records are too short to reliably assess the probabilities of the most extreme events

Next steps

 Apply the model framework to synthetic TC tracks to assess probabilities of extremes sea levels

Summary

Global GTSR dataset

- 36-year reanalysis of extreme sea-levels for the coast
- Gumbel parameters from the GTSR dataset are freely available
- Good performance, but underestimation of TC surges

Improvements for the North-Atlantic

- Apply parametric wind model to TC track data
- Validation shows good performance of TC surge
- Approach combines the TCs and ETCs surges and tides
- Next step is to use synthetic tracks to assess exceedance probabilities for TCs and go towards a full risk assessment

