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What is squall?

An example of time history of the five minutes mean and maximum wind
speeds and related directions during consecutive five minute records at
the ISMAR oceanographic tower (from Cavaleri (2012))



Motivation
I From meteorologist perspective squalls are too

small scale and, therefore, difficult to predict,
which makes them particularly dangerous. What
could we say about effect of squall on waves?

I It is accepted wisdom that we can model and
hence predict evolution of wind wave spectra
employing the kinetic (KE), aka Hasselmann
equation. To what extent it is true for rapidly
varying conditions (e.g. sharp change of wind) is
not known, since the KE is derived under
assumption of ”quasi-stationary” environment.

I For rogue waves prediction, it is essential to
predict the probability density function (PDF) of
surface elevations, not just the spectrum.

The key question we aim at is modelling of
the joint evolution of spectra and the PDF of
transient sea states without restrictive
assumptions employed in the KE.



What will we do?

I Simulate wave spectra under squall employing
both the KE (which is not supposed to work for
the squall) and GKE (which does not employ
quasi-stationarity assumption).

I Examine evolution of higher moments and the
PDF of surface elevation



Statistical description. KE & Generalized KE (GKE)

KE:
dn(k,x, t)

dt
= Sinput + Sdiss + Snl

where , n(k is the 2D wave action spectrum.

Snl = 4π

∫
T 2

0123f0123δ0+1−2−3δ(ω0+ω1−ω2−ω3) dk123,

where f0123 = n2n3(n0 + n1)− n0n1(n2 + n3),
ni ≡ n(ki), δ0+1−2−3 ≡ δ(k0 + k1 − k2 − k3)
GKE:
∂n0

∂t
= 4Re

∫
T 2

0123

[∫ t

0

e−i∆ω(τ−t)f0123 dτ

]
δ0+1−2−3 dk123

+2Re

∫ [
iT0123J

(1)
0123(0)ei∆ωt

]
δ0+1−2−3 dk123.



Simulations of the GKE

The numerical grid is 101× 31, ω × θ. ω varies in the interval 0.5, 3
with logarithmic spacing. Angle θ is between −2π/3 and 2π/3. The
initial peak is at ω = 1 and angle θ = 0. The scaling is such g = 1, so
that k = 1 at the peak. For the Hasselmann equation the grid is exactly
the same.

Initial conditions: Donelan et al (1985) with 2 ≤ U/c ≤ 7.5, ωp = 1.

Wind forcing: Hsiao & Shemdin (1985), characterized by initial U/cp.

Runge-Kutta-Fehlberg with automatic step choice (step ≤ 1/3 of the
period). After each step, all the previous history is stored, so there is no
integration over the past. The Hasselmann collision integral is computed
using the code kindly provided by Gerbrant van Vledder (Delft University
of Technology ).

In the GKE the number of interactions is due to chosen ∆ω/ωmin = 0.25
is very large (the total number is ≈ 3 · 109).



Simulations E(ω): GKE vs Hasselmann

—the GKE simulations —the Hasselmann simulations. Spectra are plotted

every 160 characteristic periods



Squall

Wind speed as function of time for the squall. Wind is normalized by the
phase speed of the spectral peak of the initial condition, time is measured
in periods of the spectral peak of the initial condition.



Evolution of wave steepness

Evolution of wave steepness during the squall, with the same colour code.



Evolution of wavenumber of the spectral peak for the squall, with the
GKE and the Hasselmann equation



Comparison of the GKE and Hasselmann equation solutions during the
squall. In this case, for a direct comparison, initial condition for the
Hasselmann equation is taken as the GKE spectrum at the beginning of
the squall



Evolution of spectral width

Evolution of spectral width (taken as the width of the one-dimensional
spectrum at half amplitude of the peak), with the (GKE —blue) and the
Hasselmann equation (—red)



Evolution of peakedness γ

Evolution of the fitted JONSWAP parameter γ



PDF of surface elevations

PDF for wave heights can be expressed in terms of
the third and fourth moments (Janssen 2014)

p(h) = 4he−2h2
{

1 +
κ4
3

(2h4 − 4h2 + 1) +
κ3
72

(4h6 − 18h4 + 18h2 − 3)
}

Here κ4 = κ40 + κ04 + 2κ22,
κ2

3 = 5(κ2
30 +κ2

03)+9(κ2
21 +κ2

12)+6(κ30κ12 +κ03κ21)

κmn =
〈ηmζn〉

〈η2〉m/2〈ζ2〉n/2

η is surface elevation, ζ is its Hilbert transform.
Thus, to find PDF we first have to examine
evolution of the moments.



Higher moments

The are two qualitatively different contribution due
non-Gaussianty to the fourth-order correlators. The
first, characterised by dynamical kurtosis C

(d)
4 , is

due to quartet interactions of free waves

C
(d)
4 = m4/m

2
2−3, m2 =

∫
ω0n0 dk0, m4 = 〈η4〉

This fourth moment of the surface elevation η due
to wave interactions is expressed through the
quantity ReJ

(1)
0123 we compute simulating the GKE

m4 = 〈η4〉 =
3

2
Re

∫
(ω0ω1ω2ω3)

1/2J
(1)
0123 dk0123

All resonant and non-resonant interactions
contribute to kurtosis, while the spectral evolution
depends only on the near-resonant interactions.



C
(d)
4

If the spectral evolution is slow, we can calculate
the kurtosis C

(d)
4 from the spectrum (Janssen 2003)

C
(d)
4 ≈

3

2m2
2

∫
T0123 (ω0ω1ω2ω3)

1/2 cos(∆ωt)− 1

∆ω
f0123δ0+1−2−3 dk0123,

where ∆ω = ω0 + ω1 − ω2 − ω3, or, in the large
time limit

C
(d)
4 ≈ −

3

2m2
2

∫
T0123 (ω0ω1ω2ω3)

1/2 f0123

∆ω
δ0+1−2−3 dk0123,

(Cauchy principal value of the integral is taken.)
If the evolution is not slow we use more lengthy
nonlocal formulae
Higher moments calculated for empirical spectra: Annenkov & Shrira, J. Phys.

Oceanogr. 44, 1582–1594 (2014).



Bound harmonics non-gaussianity
The second component of non-gaussianity is due to bound harmonics,
and can be calculated from the spectrum, if the dynamic non-gaussianity

is small (the dynamic kurtosis C
(d)
4 � 1). Second moment

µ2 = 〈η2〉 =

∫
ω0n0 dk0 +

∫ (
A2

0,1 + B20,1 + 2C0,0,1,1
)
ω0ω1n0n1 dk01

=

∫
ω0n0 dk0

The right integral cancels due to symmetry. Third moment

µ3 = 〈η3〉 = 3

∫
(A0,1 + B0,1)ω0ω1n0n1 dk01

Fourth moment

µ4 = 3

∫
ω0ω1n0n1 dk01 + 12

∫
J (4)
012ω0ω1ω2n0n1n2 dk012

Then, the bound harmonic components of skewness and kurtosis are

C
(b)
3 =

µ3

µ
3/2
2

, C
(b)
4 =

µ4

µ2
2

− 3.

Coefficients were derived by P.Janssen (2009).



Squall - dynamical kurtosis

Evolution of the dynamical kurtosis C
(d)
4 , initially under constant wind

forcing with initial U/cp = 2, 3, 4, then instantly increasing to 5 or 7.5
and decreasing back to the initial value. Red triangles mark end of squall



Squall - bound harmonics kurtosis

Evolution of the bound harmonics kurtosis C
(b)
4 , initially under constant

wind forcing with initial U/cp = 2, 3, 4, then instantly increasing to 5 or
7.5 and decreasing back to the initial value. Red triangles mark end of
squall



squall - p.d.f.

Probability density function for wave heights, normalized by significant
wave height: Rayleigh distribution (red curve), for U/c = 3 at the start
of the squall (blue curve), at the end of the squall with U/c = 7.5 (green
curve)



Squall - highest waves

Maximum individual wave height with a probability of 0.001 (“highest
wave in a thousand”) under constant wind forcing with initial
U/cp = 2, 3, 4, then instantly increasing to 5 or 7.5 and decreasing back
to the initial value. Red triangles mark end of squall



Conclusions

I Our model predicts that a squall significantly
increases wave steepness and Hs. Surprisingly
the Hasselmann eq-n does a good job, although
the GKE is better able to describe fast changes
and shows some new features.

I the GKE model yields both spectra and higher
statistical moments, it can be efficiently
computed with a fast parallel algorithm,

I within the framework of weakly nonlinear theory
it is possible to find the PDF. Squall noticeably
increases probability of rogue waves. The highest
waves are most likely at the end of the squall.


