Forecasting exceedance probabilities of extreme sea level events based on ensemble forecasts

Jani Särkkä, Laura Tuomi and Antti Kangas
Jani.Sarkka@fmi.fi
Finnish Meteorological Institute
September 12, 2017
Introduction

- Sea level forecasts are made for the Baltic Sea
- Sea level forecasts needed from 2 to 10-day length
- Planning of ship cargo loading and ship route
- Preparing for sea level extremes at the coast
- Deterministic forecast too uncertain if forecast length is longer than 4-5 days
- Probability forecasts more useful for longer time periods
Combined model of Baltic Sea level

- Sea level components are modeled separately
- Internal fluctuations of the Baltic Sea level are calculated using 2-D Hansen sea level model and assuming Baltic Sea a closed basin
- Water balance of the Baltic Sea is estimated from the daily means of zonal surface winds $v_B$ on Bornholm (55 N, 15 E)

$$z(t) = \sum_{T=1}^{60} a(T) v_B(t - T)$$

$$a(T) = \begin{cases} 2.9 \text{mm/ms}^{-1}, & 1 \leq T \leq 4 \\ 4.0 \text{mm/ms}^{-1} \times \exp(-0.072T), & 4 < T \leq 60. \end{cases}$$
Sea level at Kemi 2014

Days after 01.08.2014
Sea level at Kemi (cm)

model
observations

J. Särkkä, L. Tuomi and A. Kangas: Sea level probability forecasts
Sea level probability forecast

- 1 control and 50 perturbed forecasts from the ECMWF Ensemble Prediction System
- 15-day forecasts made daily at 00 and 12 UTC
- 10-day forecasts containing surface wind and air pressure data in the sea level model grid delivered to FMI
- Grid size 15 nmi, atmospheric input data time step 6 h
- 51 10-day sea level simulations take 3 minutes with a laptop
- Results saved for tide gauge locations (in the future the entire grid)
- Different sea level probability fractiles calculated from simulation ensemble
Sea level at Kemi December 2016-January 2017
Sea level probability forecast at Kemi

Sea level at Kemi (cm)

min
max
observations
Sea level at Kemi (cm)

Days after 07.01.2017

min
5
10
25
50
75
90
95
max
observations

J. Särkkä, L. Tuomi and A. Kangas: Sea level probability forecasts
Sea level at Kemi (cm)

Days after 09.01.2017

J. Särkkä, L. Tuomi and A. Kangas: Sea level probability forecasts
Exceedance probabilities of threshold levels

J. Särkkä, L. Tuomi and A. Kangas: Sea level probability forecasts
Summary

- Spread of forecast is small for length under 2 days
- Forecast is most useful for 2-5 days
- Spread increases after 5 days
- Sharp sea level peaks are underestimated due to 6-hour time step in input data
- Water balance variations are well described by statistical model
- For details of the sea level model, see Särkkä et al. (2017), Boreal Environment Research 22:299-315
- Sea level probability forecast is already operational at FMI