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Model setup 
NEMO 3.6 WAM 4.6.2 

Horizontal grid 3.5 km Same 

Vertical grid 56 s layers, 
emphasis on surface 

N/A 

Initial field CMEMS NWS Data Atlantiic  WAM 
wave data 

Boundary 
condition 

OSU tides,  
CMEMS NWS Data 
for T,S, u,v, SLH 

Atlantic  WAM 
wave data 

Forcing ERA-Interim, ERA-5, 
DWD COSMO-EU 

Same 
 

Vertical 
diffusion 
scheme 

GLS (k-eps) N/A 

Ice LIM-3 Yes 



Wave Model validations 

QQ-Scatter plot for satellite (Sentinel 3a)-and wind 
(top) and  significant wave height (bottom)  

Scatter Index and Bias of significant 
wave height for Sentinel-3 altimeter 
data and WAM  



Wave-induced forcing:  

The ocean model takes into account the following wave effects:  
(1) The Stokes-Coriolis forcing (Hasselmann, 1970; Breyvik, 2015, 2016) 
(2) Sea state dependent momentum flux (Janssen, 1989; Janssen, 2012);  
(3) Sea state dependent energy flux (Craig and Banner, 1994) 
 

NEMO Stokes-
Coriolis 
Force 

Ocean  
Side 
Momentu
m Stress 

Wave 
Breaking  

CTRL √ 
STCOR √ √ 
TAUOC √ √ 
TKE √ √ 
TAUST √ √ √ 
ALLWAVE √ √ √ √ 



Physical processes forming wave-circulation 
interaction: Stokes-Coriolis forcing 

Wave forcing variables (WAM 4.6.2) 

Implementation in momentum equations 
in NEMO 3.6  

From a directional wave spectrum F(f,θ), where , f denotes the 
intrinsic frequency and θ the wave direction, the Stokes drift 
vector us = (u, v) is defined as: 
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From a directional wave spectrum F(f,θ), where f is the frequency and θ 
the wave direction, the Stokes drift vector us = (u, v) is defined as: 
 

The Stokes drift profile (Breyvik et al, 
2016, JPO) 



Physical processes forming wave-circulation 
interaction: sea state dependent momentum  flux  
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Impact of waves to sea surface stress:  

The common practice in ocean modelling is to compute the wind surface stress 
based on  bulk formulas:  

In NEMO, the drag coefficient for neutral stability conditions is by Large and 
Yeager (2008) 

 
TWO wave dependent mechanisms are considered, in order to account for the impact 
of waves to sea surface stress.  
 
Momentum flux going into the sea from the waves model depends on: 
 
(1) wave-modified drag coefficient, which changes the air-side stress and  
(2) ocean side stress, which depends on the balance between wave growth and 
dissipation 
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Wave modified drag coefficient 

The wave modified drag coefficient: (computed from WAM),  
 
where k is the von Karman constant   )/10(log 0
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is not a constant, but varies with the sea state (Janssen, 1986): 

 The roughness of the sea surface:  



Variation of drag coefficient 𝐶𝐷 with 
forcing wind speed FINO1 and FINO3 

CD_WAM  CD_NEMO 



Physical processes forming wave-circulation 
interaction: ocean side stress 
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The dissipation stress is given by: 

Waves release momentum to the ocean when they break and therefore the 
ocean side stress becomes: 
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The stress from waves is archived as a normalized quantity (normalized momentum 
flux) and is applied as a factor to the air-side stress in NEMO as in Breivik et al (2015): 

 
The wave-induced stress is related to the wind input to the wave: 



North Sea: Meteo conditions extreme 
storms  Christian and Xavier  

 •  

at Fino 1 Station  

Christian (28-29.10.2013) 

Xavier(5-6.12.2013) Christian (28-29.10.2013) 

Xavier(5-6.12.2013) 



Wind speed at 10m (m/s) 

Storm Xaver on 06.12.2013 
Hs (m) 



North Sea: wave-induced processes    
    

Oct-Dec, 2013        Storm Christian (29.10.2013) 



North Sea: Wave-induced processes    
    

Oct-Dec, 2013        Storm Xaver (5-6 .12.2013) 



Maximum surge difference (m) during storms 
Cristian (left) and Xaver (right) 

 •  

   
Storm Christian (29.10.2013)   Storm Xaver  (5-6.12.2013) 



The impact of wind waves on 
hydrodynamics 

 •  



The nonlinear source term contribution 

The ocean side stress becomes: 

𝜏𝜏𝑜𝑜𝑜𝑜�����⃗ = 𝜏𝜏𝑎𝑎����⃗ − 𝜌𝜌𝑤𝑤𝑔𝑔� � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑜𝑜

0

2𝜋𝜋

0

𝑘𝑘�⃗
𝑑𝑑

(𝑆𝑆𝑖𝑖𝑖𝑖 + 𝑆𝑆𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 + 𝑆𝑆𝑁𝑁𝑁𝑁) 

 
 
The contribution from the nonlinear source term has been previously omitted, on the 
ground that it was thought to be small:  
 
 
This cutoff frequency is not  high enough - thus the contribution of the nonlinear source 
term needs to be considered. 
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The  energy balance equation: 
   

It implies that there is a balance in the high frequency tail between the input due to the 
wind but also due to nonlinear transfer from lower frequencies and dissipation.  
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SNL/NSNL runs  

Jan-Dec, 2016 

TAU_A    Reldif SNL/NOSNL  

Tau_oc/Tau_a (SNL) Tau_oc/Tau_a (NOSNL) 



Wind Speed 10 m: FINO-3 Station  (20.01-28.02.2015) 

Storm Norkas/Henrly 



03 February, 2016 15:00 h 

Forcing NEMO (SSL-NOSSL runs) 

Hs [m]   U10 (m/s  SST Diff [deg.]   SLE Diff [m] 

SNL/NOSNL[%]  Moment flux SSS Diff [psu]    Vel Diff [m/s] 



Storm Walpuga -29-30.09.2016 (Ex-Karl)  
Wave Model validations 

(a) 

Model significant wave height and satellite 
track of the  

(top)  Jason-2 on 29.09.2016 at 04:00:  

(bottom) Sentinel-3 on 29.09.2016 at 10:30 

(a) (a) 

 Significant wave height (m) and  wind speed (m/s) from GTS 
buoy  (59.6°N 2.2°E) 



29 September , 2016  15:00 h : Storm Walpuga  

Forcing NEMO (SSL-NOSSL runs) 

Hs [m]   U10 (m/s  SST Diff [deg.]   SLE Diff [m] 

SNL/NOSNL[%]   Momentum flux  SSS Diff [psu]    Vel Diff [m/s] 



The role of wave-induced forcing on 
particle drift modelling  

 •  

Drifter #5 



Baltic Sea: Sea Surface Temperature 

The comparison is for 24 July 2013, 12:00 UTC 



Discussion 

 
• Accounting for wind-waves forcing improve model predictions in the 

shallow coastal waters 
 

• Effects of  considering sea state and introducing wave-induced forcing on 
simulated storm surges and circulation are important, especially during 
extremes 
 

• The inclusion of Snl  in the momentum and energy fluxes, although small 
is not negligible  

 
• Sea state dependent fluxes and the Stokes-Coriolis  forcing  introduced in 

the ocean model are important for the e.g.  drift-model applications or 
better upwelling simulations. 

 

 

 



Thank you 
for your attention!  



One grid point version of the model. Figure 1b 
shows the time evolution of the non-dimensional 
momentum flux into the ocean for different 
constant wind forcing starting from noise level.  
In the early stage of development, the 
normalized stress into ocean is below 1 as 
waves are rapidly growing (1 a). As the waves 
field evolves towards a fully developed state, the  
version without SNL in WAM (modulus) is 
converging towards a value around 0.96 (blue 
curves). Whereas when the nonlinear source 
term is accounted for, the convergence is now 
towards 1. Note also that in the early stage of 
development, τ_oc drops less below one than 
the current version. 



30.01-03.02.2016 

Wind, wave and Fluxes 

Storm Norkas/Henrly 



03 February, 2016 09:00 h 

Forcing NEMO (SSL-NOSSL runs) 

Hs [m]   U10 (m/s  SST Diff [deg.]   SLE Diff [m] 

SNL/NOSNL[%]   Tau   SSS Diff [psu]    Vel Diff [m/s] 
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