Derivation of total extreme water levels using covariate extreme value analysis

Graham Feld
Senior Metocean Engineer

Phil Jonathan, David Randell, Emma Ross
Statistics and Data Science
Agenda

- Motivation
- Overview of Covariate Extreme Value (CEVA) approach for storm peaks
- Storm profiles
 - Seastates
 - Surges
- Inclusion of tides
- Simulations within storms
- Return period simulations
- Summary
Motivation

- Wave impact on decks of offshore platforms has a big impact on return period of structural collapse.

- Extent of perceived impact is increasing due to:
 - Increased crest heights due to better understanding:
 - spatial effect across platform area,
 - non-linearities,
 - maybe climate change effects ...
 - Platform subsidence

- For non-evacuated structures can mean platform evacuation in severe storms or even shut down completely.
- In the past, simplistic approaches/assumptions have been used to derive the total water levels in extreme storms.
- Trying to improve the approach
Overview of CEVA for storm peak Hs

- Define an array of seasonal-directional bins – typically 32 $Drc (11.25°) \times 24 \ Ssn (~2 \ weeks)$
- Select a storm threshold as a quantile varying across all bins – captures calmer directions/seasons
- Save from each storm:
 - storm peak
 - storm profile (more of this later)
- For all $Drc-Ssn$ bins
 - Select an EVA threshold based on a quantile, μ
 - Fit the storm occurrence rate, λ, as a Poisson process
 - Fit GP shape, σ, and scale, γ, parameters
- Variation of all parameters is by B-splines
- A smoothing parameter defines how quickly their magnitudes can change
- Perform a Monte Carlo analysis for storm peaks for RP
- Identify the largest Hs within each storm and assign to a $Drc-Ssn$ bin
Comparison of modelled and observed storm peaks

- Observed: data - red dots, 95% UI red dashed lines
- Model: median – solid black line, 95% UI black dashed lines
Definition of total water level

Max total water level, $\tau_{WL} =$

- Instantaneous max wave crest
- Hourly mean surge
- Hourly mean tidal level
Storm profiles

It is not sufficient to just base the analysis on storm peaks because

- Storms last longer than one sea-state so ...
 - ... largest individual crests may occur during smaller sea states ...
 - ... in a direction sector different to storm peak.

- The \textit{TWL} may occur at a time of
 - ... large tide away from peak H_s ...
 - ... or at a time of large surge.

- So, need to define realistic storm profiles to associate with each storm peak:
 - Want to reflect the variability in characteristics with season, direction and severity of storms
Selection of storm profiles for a simulated storm peak

- Assume that observed storm shapes are representative.

- Put observed “archetype” storm profiles into bins based on their peak Hs and associate Drc, Ssn

- Find distance, D, from any simulated Hs_{sp}, Ssn_{sp}, Drc_{sp} to each bin

$$D = \sqrt{\frac{(Hs_{sp} - Hs_{bin})^2}{\alpha_{Hs}} + \frac{(Ssn_{sp} - Ssn_{bin})^2}{\alpha_{Ssn}} + \frac{(Drc_{sp} - Drc_{bin})^2}{\alpha_{Dir}}}$$
Storm profiles - waves

Storm archetype

- H_s quantile varying by direction
- Start and end of storm based on H_s
 - Storm peak H_s

Wave profile use:

- Simulate a random storm peak, $H_{s_{sp}}, D_{rc_{sp}}, S_{sn_{sp}}$
- Find the closest bin to this storm peak, by minimising D
- Randomly select a wave profile from that bin, e.g. profile shown
- Scale the whole profile so $H_s = H_{s_{sp}}$ of a simulated storm
- Modify D_{rc} and S_{sn} to match $D_{rc_{sp}}, S_{sn_{sp}}$
- Modify wave periods, T_{02}, to keep the same steepness
Storm profiles - surge

Storm archetype
- Hs quantile varying by direction
- Start and end of storm based on Hs

Surge characteristic values
- Median surge

Surge and wave profiles are selected as a pair from same storm
Modify storm surge profile based on relationships between peak storm Hs and either:
- Surge max, min and median, or
- Surge median and range
Example – max storm surge versus Hs

- **Base on:**
 - Max storm H_s
 - Max storm surge

- Define an H_s “lock point” as a quantile

- Derive median value of max surge for H_s lock point

- Fit a slope based on linear regression

- Fit to all Drc-Ssn bins in one go using splines to capture variability across array
Storm surge versus Hs – max, min, median by direction

- Storm maximum
- Storm median
- Storm minimum

- Each plot shows range of fits from 4 D_{rc} x 24 S_{sn} bins in each octant
Storm surge versus Hs – max, min, median by month

- Storm maximum
- Storm median
- Storm minimum

Each plot shows range of fits from 32 $Drc \times 2 \ Ssn$ bins in each month
Storm surge versus Hs – range by direction

- Storm range

- Each plot shows range of fits from 4 \(Drc \times 24 \) \(Sn \) bins in each octant
Storm surge versus Hs – range by month

- Storm range

- Each plot shows range of fits from 32 $D_{rc} \times 2 \ S_{sn}$ bins in each month
Storm surge versus Hs summary

<table>
<thead>
<tr>
<th>H_s lock</th>
<th>Slope</th>
<th>Surge lock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison of observed and predicted storm surge

Maximum

Minimum

Median

Range
Residuals between observed and predicted storm surge

Residuals are sampled during Monte Carlo analysis
Storm surge scaling – based on min, max, median

Archetype storm

\[
S'_{\text{max}} = f(H_{sp}, H_{lock}, surgeLock_{\text{max}}, slope_{\text{max}}) + \text{RandomResidual}_{\text{max}}
\]

\[
S'_{\text{median}} = f(H_{sp}, H_{lock}, surgeLock_{\text{median}}, slope_{\text{median}}) + \text{RandomResidual}_{\text{median}}
\]

\[
S'_{\text{min}} = f(H_{sp}, H_{lock}, surgeLock_{\text{min}}, slope_{\text{min}}) + \text{RandomResidual}_{\text{min}}
\]

Scaled storm profile

\[
\text{scaling}_{>\text{median}} = \frac{S'_{\text{max}} - S'_{\text{median}}}{S_{\text{max}} - S_{\text{median}}}
\]

\[
\text{scaling}_{<\text{median}} = \frac{S'_{\text{min}} - S'_{\text{median}}}{S_{\text{min}} - S_{\text{median}}}
\]
Storm surge scaling – based on range and median

Archetype storm

Scaled storm profile

\[S'_{\text{min}} = f(H_{s_{\text{sp}}}, H_{s_{\text{lock}}}, \text{surgeLock}_{\text{range}}, \text{slope}_{\text{range}}) + \text{RandomResidual}_{\text{range}} \]

\[S'_{\text{median}} = f(H_{s_{\text{sp}}}, H_{s_{\text{lock}}}, \text{surgeLock}_{\text{median}}, \text{slope}_{\text{median}}) + \text{RandomResidual}_{\text{median}} \]
Storm surge modelling performance

- Based on:
 - Max, min, median
 - Observed data points (grey)

- Comparison of:
 - observed (red)
 - modelled (black)

- Medians (solid)
- 95% UI (dashed)
Inclusion of tides

- Sample tide
 - In “deep water” by just a random selection
 - In shallow water, tide is sampled from the same storm as the waves, to preserve interactions
Simulation within storms

- H_{sp} simulated with an associated D_{rcsp} and S_{snsp} using varying Poisson and GP distributions
- Randomly-selected archetype storm from the “closest” bin
- Re-scale:
 - entire storm profile Hs to match the peak to H_{sp}, D_{rcsp} and S_{snsp}
 - wave periods scaled to maintain wave steepnesses
 - surge history using the selected method
- Add tide (or re-using tide, if a shallow-water location)
- Calculate total water depth for every sea state as $\text{tide} + \text{surge} + \text{water depth}$
- Randomly sample C_{max} from each sea state using Forristall distribution based on total water depth
- Calculate the maximum TWL from every sea-state within the storm as: $C_{max} + \text{surge} + \text{tide}$
- For each storm, max value of TWL is saved for every $Drc-Ssn$ bin impacted by storm
Return period simulation

Use Monte Carlo approach to simulate all storms in a RP of interest multiple times:

- Fit Poisson and GP models to B bootstraps of the original data
- Make R realisations of the full return period of interest for each bootstrap
- Produces $B \times R$ simulations
- Save largest values TWL for every Drc-Ssn bin
- Produce CDFs for the maxima for RP of interest in each Drc and Ssn bin
- RV for each bin is taken as the most-probable value $\sim\exp(-1)$
- Other percentiles, can also be captured, e.g. 95% UI
10,000-year return values ranges

- Based on ranked storm maxima from all simulations
- The more simulations, the smoother the lines
- This example based on 300 simulations
- The spread reflects uncertainties
Uncertainty

- The natural randomness (aleatory uncertainty)
 - Sampling storm peaks multiple times from the fitted model
 - Sampling storm profiles
 - Sampling wave height and crests
 - Re-scaling surge histories from the residuals of the fitted distribution
 - (Sampling tide randomly)

- Uncertainty in model based on finite sample and modelling assumptions (epistemic uncertainty)
 - EVA threshold
 - Bootstrapping the original data multiple times

- Aleatory uncertainty dominates the confidence interval range within CEVA.
Results

Wave crest directional return values

<table>
<thead>
<tr>
<th>Crest</th>
<th>Return Period [years]</th>
<th>1</th>
<th>10</th>
<th>50</th>
<th>100</th>
<th>1000</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>4.7</td>
<td>6.6</td>
<td>7.7</td>
<td>8.1</td>
<td>9.5</td>
<td>10.6</td>
<td></td>
</tr>
<tr>
<td>NE</td>
<td>3.8</td>
<td>5.8</td>
<td>6.9</td>
<td>7.3</td>
<td>8.5</td>
<td>9.8</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>3.6</td>
<td>5.4</td>
<td>6.5</td>
<td>6.8</td>
<td>8.2</td>
<td>9.2</td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td>3.9</td>
<td>5.5</td>
<td>6.3</td>
<td>6.7</td>
<td>7.7</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>5.0</td>
<td>6.5</td>
<td>7.3</td>
<td>7.6</td>
<td>8.7</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>SW</td>
<td>4.9</td>
<td>6.3</td>
<td>7.1</td>
<td>7.5</td>
<td>8.4</td>
<td>9.4</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>4.9</td>
<td>6.6</td>
<td>7.4</td>
<td>7.8</td>
<td>8.9</td>
<td>10.1</td>
<td></td>
</tr>
<tr>
<td>NW</td>
<td>4.9</td>
<td>6.8</td>
<td>7.7</td>
<td>8.0</td>
<td>9.1</td>
<td>10.3</td>
<td></td>
</tr>
<tr>
<td>Omni</td>
<td>6.2</td>
<td>7.6</td>
<td>8.4</td>
<td>8.8</td>
<td>10.0</td>
<td>11.0</td>
<td></td>
</tr>
</tbody>
</table>

TEWL directional return values

<table>
<thead>
<tr>
<th>Crest</th>
<th>Return Period [years]</th>
<th>1</th>
<th>10</th>
<th>50</th>
<th>100</th>
<th>1000</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>5.7</td>
<td>7.7</td>
<td>8.9</td>
<td>9.3</td>
<td>10.7</td>
<td>11.9</td>
<td></td>
</tr>
<tr>
<td>NE</td>
<td>4.7</td>
<td>6.7</td>
<td>7.9</td>
<td>8.3</td>
<td>9.6</td>
<td>10.8</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>4.4</td>
<td>6.1</td>
<td>7.2</td>
<td>7.5</td>
<td>8.8</td>
<td>10.1</td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td>4.5</td>
<td>6.1</td>
<td>6.9</td>
<td>7.3</td>
<td>8.4</td>
<td>9.4</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>5.5</td>
<td>7.0</td>
<td>7.8</td>
<td>8.1</td>
<td>9.1</td>
<td>10.1</td>
<td></td>
</tr>
<tr>
<td>SW</td>
<td>5.6</td>
<td>7.0</td>
<td>7.8</td>
<td>8.2</td>
<td>9.1</td>
<td>10.1</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>5.9</td>
<td>7.5</td>
<td>8.5</td>
<td>8.8</td>
<td>10.0</td>
<td>11.1</td>
<td></td>
</tr>
<tr>
<td>NW</td>
<td>6.1</td>
<td>8.0</td>
<td>9.0</td>
<td>9.5</td>
<td>10.7</td>
<td>11.7</td>
<td></td>
</tr>
<tr>
<td>Omni</td>
<td>7.0</td>
<td>8.7</td>
<td>9.6</td>
<td>9.9</td>
<td>11.3</td>
<td>12.4</td>
<td></td>
</tr>
</tbody>
</table>

SWL directional return values

<table>
<thead>
<tr>
<th>Implied SWL</th>
<th>Return Period [years]</th>
<th>1</th>
<th>10</th>
<th>50</th>
<th>100</th>
<th>1000</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>0.9</td>
<td>1.1</td>
<td>1.2</td>
<td>1.2</td>
<td>1.1</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>NE</td>
<td>0.9</td>
<td>0.9</td>
<td>1.0</td>
<td>1.0</td>
<td>1.1</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0.8</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.7</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6</td>
<td>0.5</td>
<td>0.6</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>SW</td>
<td>0.7</td>
<td>0.6</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>1.0</td>
<td>0.9</td>
<td>1.1</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>NW</td>
<td>1.2</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.6</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>Omni</td>
<td>0.8</td>
<td>1.1</td>
<td>1.2</td>
<td>1.1</td>
<td>1.3</td>
<td>1.4</td>
<td></td>
</tr>
</tbody>
</table>

Wave crest monthly return values

<table>
<thead>
<tr>
<th>Crest</th>
<th>Return Period [years]</th>
<th>1</th>
<th>10</th>
<th>50</th>
<th>100</th>
<th>1000</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>4.8</td>
<td>6.6</td>
<td>7.5</td>
<td>7.9</td>
<td>9.0</td>
<td>9.9</td>
<td></td>
</tr>
<tr>
<td>Feb</td>
<td>4.2</td>
<td>6.0</td>
<td>6.9</td>
<td>7.3</td>
<td>8.4</td>
<td>9.4</td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td>3.7</td>
<td>5.4</td>
<td>6.6</td>
<td>7.0</td>
<td>8.5</td>
<td>9.7</td>
<td></td>
</tr>
<tr>
<td>Apr</td>
<td>3.4</td>
<td>5.2</td>
<td>6.3</td>
<td>6.8</td>
<td>8.1</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>2.9</td>
<td>4.6</td>
<td>5.7</td>
<td>6.2</td>
<td>7.2</td>
<td>8.3</td>
<td></td>
</tr>
<tr>
<td>Jun</td>
<td>2.6</td>
<td>4.4</td>
<td>5.4</td>
<td>5.8</td>
<td>7.1</td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td>Jul</td>
<td>2.7</td>
<td>4.3</td>
<td>5.5</td>
<td>5.9</td>
<td>7.2</td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td>Aug</td>
<td>3.0</td>
<td>4.7</td>
<td>5.8</td>
<td>6.2</td>
<td>7.3</td>
<td>8.2</td>
<td></td>
</tr>
<tr>
<td>Sep</td>
<td>3.4</td>
<td>5.3</td>
<td>6.3</td>
<td>6.6</td>
<td>7.7</td>
<td>8.6</td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td>4.1</td>
<td>6.1</td>
<td>7.1</td>
<td>7.5</td>
<td>8.8</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td>4.6</td>
<td>6.6</td>
<td>7.6</td>
<td>7.9</td>
<td>9.1</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>Dec</td>
<td>5.1</td>
<td>6.8</td>
<td>7.6</td>
<td>8.0</td>
<td>9.1</td>
<td>10.1</td>
<td></td>
</tr>
<tr>
<td>All Year</td>
<td>6.2</td>
<td>7.6</td>
<td>8.4</td>
<td>8.8</td>
<td>10.0</td>
<td>11.0</td>
<td></td>
</tr>
</tbody>
</table>

TEWL monthly return values

<table>
<thead>
<tr>
<th>Crest</th>
<th>Return Period [years]</th>
<th>1</th>
<th>10</th>
<th>50</th>
<th>100</th>
<th>1000</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>5.6</td>
<td>7.4</td>
<td>8.4</td>
<td>8.7</td>
<td>10.0</td>
<td>10.8</td>
<td></td>
</tr>
<tr>
<td>Feb</td>
<td>4.9</td>
<td>6.7</td>
<td>7.9</td>
<td>8.3</td>
<td>9.4</td>
<td>10.4</td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td>4.6</td>
<td>6.3</td>
<td>7.5</td>
<td>7.9</td>
<td>9.2</td>
<td>10.6</td>
<td></td>
</tr>
<tr>
<td>Apr</td>
<td>4.4</td>
<td>6.0</td>
<td>7.1</td>
<td>7.6</td>
<td>9.0</td>
<td>10.4</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>3.7</td>
<td>5.4</td>
<td>6.6</td>
<td>7.0</td>
<td>8.0</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td>Jun</td>
<td>3.6</td>
<td>5.2</td>
<td>6.3</td>
<td>6.8</td>
<td>8.1</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td>Jul</td>
<td>3.7</td>
<td>5.4</td>
<td>6.6</td>
<td>7.0</td>
<td>8.3</td>
<td>9.3</td>
<td></td>
</tr>
<tr>
<td>Aug</td>
<td>4.1</td>
<td>5.8</td>
<td>6.9</td>
<td>7.2</td>
<td>8.4</td>
<td>9.4</td>
<td></td>
</tr>
<tr>
<td>Sep</td>
<td>4.4</td>
<td>6.6</td>
<td>7.4</td>
<td>7.8</td>
<td>9.0</td>
<td>9.9</td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td>5.2</td>
<td>7.3</td>
<td>8.4</td>
<td>8.9</td>
<td>10.2</td>
<td>11.3</td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td>5.5</td>
<td>7.7</td>
<td>8.8</td>
<td>9.2</td>
<td>10.5</td>
<td>11.5</td>
<td></td>
</tr>
<tr>
<td>Dec</td>
<td>5.8</td>
<td>7.7</td>
<td>8.6</td>
<td>9.0</td>
<td>10.2</td>
<td>11.3</td>
<td></td>
</tr>
<tr>
<td>All Year</td>
<td>7.0</td>
<td>8.7</td>
<td>9.6</td>
<td>9.9</td>
<td>11.3</td>
<td>12.4</td>
<td></td>
</tr>
</tbody>
</table>

SWL monthly return values

<table>
<thead>
<tr>
<th>Implied SWL</th>
<th>Return Period [years]</th>
<th>1</th>
<th>10</th>
<th>50</th>
<th>100</th>
<th>1000</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>0.9</td>
<td>0.8</td>
<td>0.9</td>
<td>0.8</td>
<td>1.0</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Feb</td>
<td>0.8</td>
<td>0.8</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.8</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Apr</td>
<td>0.9</td>
<td>0.8</td>
<td>0.8</td>
<td>0.7</td>
<td>1.0</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>0.9</td>
<td>0.8</td>
<td>0.9</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Jun</td>
<td>1.0</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Jul</td>
<td>1.0</td>
<td>1.0</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Aug</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Sep</td>
<td>1.0</td>
<td>1.2</td>
<td>1.1</td>
<td>1.2</td>
<td>1.2</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td>1.1</td>
<td>1.3</td>
<td>1.3</td>
<td>1.4</td>
<td>1.3</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td>0.9</td>
<td>1.1</td>
<td>1.3</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>Dec</td>
<td>0.7</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>1.1</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>All Year</td>
<td>0.8</td>
<td>1.1</td>
<td>1.2</td>
<td>1.1</td>
<td>1.3</td>
<td>1.4</td>
<td></td>
</tr>
</tbody>
</table>
Summary

- Described a process to derive TEWL using the CEVA approach.
- Storm peak modelling based on spline-smoothed: thresholds, Poisson rates, GP parameters.
- Wave storm profiles are sampled and scaled to match peaks of simulated storms.
- Associated storm surge profiles re-scaled using linear regressions and residuals.
- Addition of random or associated tides, depending on water depth.
- Monte Carlo simulation is used based on multiple bootstraps and realisations.

Still under development:
- Better scale storm characteristics to very large storms, e.g. storm length
- Use of Heffernan & Tawn conditional extremes approach to extrapolate surge characteristics to higher H_s
- Increasing use of Numerical Integration (rather than Monte Carlo approach)
- Incorporation of more recent wave crest probability distributions