Measuring the ‘First Five’ with HF radar

Lucy R. Wyatt

School of Mathematics and Statistics
University of Sheffield
and Seaview Sensing Ltd

email: l.wyatt@sheffield.ac.uk, lucywyatt@seaviewsensing.com
HF radar wave measurements in South Australia

Data from IMOS/SA WERA radars

1st International Workshop on Waves, Storm Surges and Coastal Hazards, Liverpool
HF radar wave measurement

Energy spectra, significant waveheight, peak direction, power, Fourier coefficients etc are obtained from the radar directional spectrum using standard methods.
The HF radar directional spectrum is obtained by integral inversion of radar Doppler spectra from 2 radars.
The HF radar directional spectrum is obtained by integral inversion of radar Doppler spectra from 2 radars.

The buoy directional spectrum is obtained using a maximum likelihood method applied to the measured Fourier coefficients at each frequency (the first five).

Energy spectra, significant waveheight, peak direction, power, Fourier coefficients etc are obtained from the radar directional spectrum using standard methods.
The HF radar directional spectrum is obtained by integral inversion of radar Doppler spectra from 2 radars.

The buoy directional spectrum is obtained using a maximum likelihood method applied to the measured Fourier coefficients at each frequency (the first five).

Energy spectra, significant waveheight, peak direction, power, Fourier coefficients etc are obtained from the radar directional spectrum using standard methods.
Buoy and model validations

Measurements from the IMOS South Australian Gulf WERA radars (green) compared with non-directional waverider buoy (black) and SWAN model (red).

Significant Waveheight

Peak Wave Direction

provided by Charles James, SARDI
Pisces buoy comparisons

Significant Waveheight

Wave power

Hs (m)

Te (s)

Power data histogram

1st International Workshop on Waves, Storm Surges and Coastal Hazards, Liverpool 5/14
Buoy comparisons
Energy spectra time series

Pisces in Celtic Sea

WERA in Norwegian Sea

upper panel – radar
lower panel – buoy.
Buoy comparisons
Fourier coefficient timeseries

Pisces in Celtic Sea

WERA in Norwegian Sea

upper panel – radar, lower panel – buoy. upper pair $a_1(f)$, lower pair $b_1(f)$.
Buoy mean comparisons

Pisces in Celtic Sea

Wera in Norway
Buoy mean comparisons

Pisces in Celtic Sea

Wera in Norway

1st International Workshop on Waves, Storm Surges and Coastal Hazards, Liverpool

9/14
Simulation results

Using different radio frequencies, wind speed and directions.

$E(f)$

$\bar{\theta}(f)$
Simulation results

Mean Fourier Coefficients with std.

[Graphs showing mean Fourier coefficients with standard deviation for different sensors (radar m, buoy m, radar s, buoy s) over a range of wave frequencies.]
Simulation results

$E(f)$

- mean 5.96
- y mean 6.16
- bias 0.2
- std 0.65
- rms 0.68
- cc 0.997
- si 0.11
- N 10500

$a1(f)$

- mean 0.28
- y mean 0.27
- bias -0.01
- std 0.09
- rms 0.09
- cc 0.983
- si 0.32
- N 10500

$b1(f)$

- mean 0.05
- y mean 0.02
- bias -0.03
- std 0.12
- rms 0.12
- cc 0.946
- si 2.5
- N 10500
Summary

Simulations indicate that Fourier coefficients can be measured with reasonable accuracy within previously identified limitations of the inversion method:

- low radio frequencies at low waveheights
- high radio frequencies at high waveheights

Comparisons with buoys include additional sources of difference/error:

- noise levels, radio interference, ship signals
- uncertainties in buoy measurements
- spatial and temporal measurement differences
Thank you for your attention

HF radar and wavebuoy ocean wave spectra

1st International Workshop on Waves, Storm Surges and Coastal Hazards, Liverpool