

P. P. Shirshov Institute of Oceanology of the Russian Academy of Sciences Sea Atmosphere Interaction And Climate Laboratory

Lomonosov Moscow State University Faculty of Geography

35-year 1979-2013 (1979–2000 for now) high resolution North Atlantic wind wave hindcast (pilot results)

Margarita Markina (markina@sail.msk.ru) S. Gulev, A.Gavrikov, V. Grigorieva

14th International Workshop on Wave Hindcasting and Forecasting and 2nd JCOMM Scientific and Technical Symposium on Storm Surges

Outline

- High-resolution spectral wave model **WAVEWATCH III** (WW3) in conjunction with non-hydrostatic mesoscale NWP system **WRF** (Weather Research and Forecasting)
- Validation against buoys and VOS
- 22-year time period from 1979 to 2000 (the period 2001-2013 is still to come)
- Output : basic characteristics of wind waves, including extreme waves
- Results of the analysis include characteristics of interannual variability of mean and extreme waves

Contents:

- 1. WRF configuration
- 2. WW3 configuration
- 3. Mean waves analysis (reanalysis ERA-Interim vs WW3-WRF hindcast)
- 4. Extreme waves analysis (reanalysis ERA-Interim vs WW3-WRF hindcast)
- 5. Conclusions

WRF configuration

Parametrizations

Microphysics	WRF Single-Moment 3-class scheme (WSM3)
Convection	Advanced Kain-Fritsch scheme
Radiation	CAM scheme
Surface	Noah Land Surface Model
PBL	BouLac PBL
Surface layer	Eta similarity

Initial conditions

ERA-Interim reanalysis of the global atmosphere covers the period since 1979 with resolution 0.7° (T255) and 60 levels in vertical.

WRF is run at 6-hr resolution with time-varying SST from the ERA-Interim reanalysis (2 times daily)

WAVEWATCH III configuration

WW3 version 4.18

- multi-grid set-up with regular spherical grids (20-70° N, 85° W-15° E)
- horizontal resolution of 0,25° (global grid) and 0,1° (regional grid)
- spectral resolution with 40 frequencies and 36 directions
- parametrization scheme of input and dissipation
 BYDRZ (Babanin, Young, Donelan, Rogers, Zieger) includes swell dissipation
- Non-linear interactions: DIA

Initial conditions: 10 m winds from WRF at 15 km resolution

Computer resources

MiniCluster **CRAY CX1 4** nodes (**48** cores in total) Memory : **8 Gb / core**. Peak performance **0,6 TFLOPS**.

Data preparation

- Preparing data for WRF hindcast
- Regridding WRF output wind on WW3 grid
- Sensitivity tests
- Data analysis

Modelling

Running model experiments. Both WRF and WW3 were running yearly on 256 CPU cores.

Climatic means (1979-2010) significant wave height (SWH)

Climatic means (1979-2010) 95th percentile significant wave height (SWH)

Annual trends in mean SWH and 10-m wind (ERAi vs WW3)

Annual winter trends in SWH and 10-m wind (ERAi vs WW3)

Annual trends in 95th percentile SWH (ERAi vs WW3)

Annual trends in 95th percentile SWH (ERAi vs WW3)

Regional interannual variability of mean SWH and 95th percentile

Regional temporal evolution of anomalies in SWH (ERAi vs WW3)

Regional temporal evolution of anomalies in SWH (ERAi vs WW3)

Regional temporal evolution of anomalies in SWH (ERAi vs WW3)

Conclusions

- Long-term high resolution wind wave hindcast over the North Atlantic for period from 1979 to 2000 has been performed
- Pilot analysis of variability reveals serious inconsistencies with ERAi:
 - The output reveals positive significant trends(5 cm/yr) in the mean SWH in the northeastern Atlantic (consistently with ERAi). A little consistency between WW3 and ERAi has been found in long-term variability in the subtropics
 - Positive significant trends(3 cm/yr) in 95th percentile of SWH for the northeastern Atlantic and negative trends (-5 cm/yr) in the central Atlantic subtropics –*winters only*
 - Growing occurrence of high waves (1989 1991) for both eastern and western North Atlantic midlatitudes
- Analysis of potential reasons (both technical and physical) for the observed inconsistencies is on the way