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Interactive, Physics-Driven

Wave Simulation

 Focus here on phase-resolving wave models (shallow water, Boussinesg-type)
» Widespread usage in scientific applications, more limited in engineering and
operations usage
» Why?

» Time - computational cost can be high, often hours - days for large

domains ---- can the project support it?

» Input Uncertainty = deterministic modeling with lots of imprecision /

uncertainty in bathymetry, incident wave spectrum, etc. --- can the user tell

the result is “better” than a result from a “simpler” model?

» But... this is related to the cost of the model...

« What if we could run these models faster than real time, with ordinary
hardware? If real-time, can we “interact” with the simulation?




Interactive, Physics-Driven

Wave Simulation

e Qur approach
» Implement a Boussinesq-type solver on GPU
» Design for visualization and interactivity

e Qur equations
» Extended Boussinesqg equations of Madsen et al (1991, 1992)

 Numerical Solution
» Finite volume approach in space
» Predictor-corrector in time
» Breaking approximated via numerics, use of slope and flux limiters
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File System

Time

High cost

I/0 is the bottleneck
Visualization is delayed
Lack of interactivity
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GPU

File System

Time

Workstation

Low cost
I/0 is optional
Visualization is Real-

time
Interactivity is possible



Shader Programming :

(on OpenGL, DirectX)

Reformulating problem in
terms of graphics primitives
(textures, pixels, etc.).

Longer learning curve
Visualization is done via direct
access to graphical libraries
Runs on many devices

Easy to generate stand-alone
software

CUDA:

 Ignoring the underlying
graphical concepts.

 Shorter learning curve

 Visualization is done
through a graphical API
such as OpenGL

* Runs only on CUDA
enabled GPU’s from
NVIDIA

e Depended on CUDA
library.



o Texture mapping is wrapping a bitmap image around a 3D
model in order to add details and surface texture to the model.

* \We use textures as a data structure to store flow parameters and
to perform the computations.

From Computer Desktop Encyclopedia
Reproduced with permission.
& 2001 Intergraph Computer Systems

2D texture

2D texture " draped"
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Reformulating problem in terms of graphics primitives

e Data must be stored within textures. Each texture is a matrix of texels”.

e Each texel, generally, contains 4 scalar variables: R, G, B, A.

* In areal texture image, RGB values represent the intensity of red, green, and
blue color of the texel, and A (alpha) represent its opacity.

* We use these variables to store flow parameters.

Examples:

Texture2D<float4> txState : register(t0); Texture2D<float4> txH : register(t0); Texture2D<float4> txXFlux : register(t2 );
//.r=nh // .r = North // .r = h-flux (x direction)

// .g=hu // .g = East // .g = hu-flux (x direction)

// b=hv // .b = South // .b = hv-flux (x direction)

// .a = (unused) // .a = West // .a = (unused)

e Computations are done for each texel in parallel.

CalcUV(txState.Load(idx).r, txState.Load(idx).g, txState.Load(idx).b, u,v);
// CalcUV( h , hu , hv , W,v);

*
Texels are texture elements as pixels are image elements. The renderer maps texels to appropriate pixels in the output picture.
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Simulation flow

Each step is done through passing a shader and appropriate textures to the GPU

Y
Repeats multiple times before each rendering.
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Boussinesq Modeling Software

Shader Programming using DirectX10 and HLSL
Runs on any Directx10 compatible device.
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Simulation - Opportunities
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e Faster than real-time =
simulation of Boussinesq- 4 )_) et
type models: ——— 1\

— Interactive, tablet based
simulation

— Wave-by-wave resolving
nowcasts

— Collaborative operations
planning using “real” physics
engine

— QOutreach & Education
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Augmented Reality Sandbox -
Oliver Kreylos

@ http://idav.ucdavis.edu/~okrey

los/ResDev/SARNndbox/
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Augmented Reality Sandbox -
Oliver Kreylos
http://idav.ucdavis.edu/~okrey
los/ResDev/SARNdbox/
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Augmented Reality Sandbox -
Oliver Kreylos
http://idav.ucdavis.edu/~okrey
los/ResDev/SARNdbox/
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e Faster than real-time simulation of Boussinesq-type models:
— Interactive, tablet based simulation
— Wave-by-wave resolving nowcasts
— Collaborative operations planning using “real” physics engine
— Qutreach & Education

wE ™
=

IN-Form @ MIT
http://tangible.media.mit.edu/project/inform/
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