

Development of a global tide and surge model

2nd JCOMM Scientific and Technical Symposium on Storm Surges, 8-13 Nov. 2015, Key West, USA; Martin.verlaan@deltares.nl

Outline

- Introduction
- Development of GTSM version 1
- Reanalysis of extreme sea levels
- GLOSSIS operational forecasting
- Tropical cyclones
- Model improvements towards GTSM version 2

Introduction & Development of GTSM v1.0

for:

Computing water levels dynamically (surge, tide etc. combined) during any significant events but also to for statistic analysis Study the effect of MSL on tide and water level globally

Grid in Dflow-FM

Unstructured approach - step 1: grid thinning at high latitudes

Grid in Dflow-FM

Unstructured approach - step 2: grid refinement in shallow areas

This Dflow-FM grid uses triangles and rectangles for local grid refinement. Resolution is based on Courant number.

Grid North America

Necessary terms:

- 1. Self attraction and loading
 - Tides modify the gravity potential
 - Computationally expensive so we use simple approximation
- 2. Internal tides
 - Tides create internal tide where there is stratification and steep bathymetry
 - introduce dissipation (roughly ¼ of total tidal dissipation on global scale)

Calibration of the Model

Calibration results for deep water

100 -

Region	Before	After	
Arctic	5.1 cm	3.2 cm	
N. Atlantic	9.4	7.4	
S. Atlantic	12.1	8.4	a)
N. Pacific	8.1	6.2	lattitude
S. Pacific	11.2	7.3	
Indian Ocean	11.7	8.2	
S. Ocean	12.4	10.2	
Total	10.2	7.4	,

RMSE based on model results and observations for January 2007

[m]

Deltares

0.2

2nd JCOMM Scientific and Technical Symposium on Storm Surges, 8-13 Nov. 2015, Key West, USA

Sample deep water station

After calibration

Sample coastal time-series

Cordova

Tide

Surge

0.6

time since 01-Jan-2007

GTSM computation time on a cluster

wall-clock in minutes per simulation day

Number of cpu-cores (each i7 processor has 4 cores)

Reanalysis of extreme sea-levels using ERAinterim wind data cooperation with VU

Validation ERA-interim (1980-2011)

Surge errors

a

•

RMSE (m) surge • < 0.05 0.05 - 0.10 0.10 - 0.25 0.25 - 0.50 0.50 - 1.00 ٠ • > 1.0

Validation of return periods

Tropical Cyclones – work is under way

Distribution of cyclones

Tropical cyclone frequency distribution

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

UHSLC observation stations

0	no risk	
10000	1.000 (Control 1997) - 27.000 (Control 1997)	

0 - 40%Iow risk moderate risk 50 - 70%

0

80 - 100% high risk

Model improvements towards GTSM v2.0

Dissipation by internal tides

Energy Dissipation - Internal (W/m²)

JRC-Deltares cooperation September 7-8 2015

SAL-term

Deltares

GLOSSIS operational forecasting

GLOSSIS – global operational storm surges

Real-time observations from IOC

Pacific start Sept 2015

FEWS Global Storm Surge Information System (GLOSSIS) (Operator Client)

Thanks and Questions?

Modified equations

Conservation of momentum

