Morphological Control on Overwashing Hazard at an Energy Generation Asset

Thomas Prime, Jennifer M. Brown and Andrew J. Plater

Adaptation and Resilience of Coastal Energy Supply

Impacts of 2013/2014 Winter Storms on UK North Sea Coastline

Current Defences are mostly resilient, but aging and increasing mean sea levels will deteriorate their resilience to extreme events

Study Area: Sizewell Power Station and Minsmere Nature Reserve

Xbeach-G: Storm Impact Model for Gravel Beaches

XBeach-G is a branch of the main XBeach development that is being developed to simulate storm impacts on gravel beaches.

21600 seconds

Time (seconds)

28800 seconds

36000 seconds

43200 seconds

-1.5

0 seconds

7200 seconds

14400 seconds

Simulating an ensemble of scenarios

Reasons an ensemble of scenarios would be required, these include:

- being able to modify beach profiles to simulate the benefit and any negative impacts of beach nourishment
- Increasing the defence crest height to reduce overwashing risk
- Running many different joint probability combinations to understand the uncertainty in these joint probabilities
- Able to run lots of probabilities of occurrence at different projected SLR

Reducing computational cost is important as it allows all these benefits while not having a detrimental impact on the

result.

Reducing Computational Cost of Running Multiple Scenarios

Extreme Event being simulated

- 1 in 1000 year return period extreme water level (3.6 m OD)
- Wave conditions measured during 6th December 2013 extreme event from nearby wave buoy

		12
⊡- CFB_Extr	eme_Sea_Levels	
Location:	649,682,473,264,422,455 Meters	<u>()</u>
Eicld	Value	1
riela	value	1
FID	2096	_
Shape	Point	
	4102	
TI	192	
11	2.12	
12	2.12	
T10	2.45	
T20	2.6	
T25	2.65	
T50	2.8	1
T75	2.9	
T100	2.96	
T150	3.07	
T200	3.13	
T250	3.19	
T300	3.23	
T500	3.36	
T1000	3.55	
T10000	4.21	
ISLAND	MAIN	
DACE VEAD	2008	
BASE_YEAR		

Joint Probability can be performed to provide a probability of occurrence for the extreme water level and wave height but the short data set (~8 years) means low probabilities difficult to calculate

Inundation Extent and Depth Difference of Real Profiles and 50th Percentile Representative Profile

Flood Depth Difference	Extent (m ²)	Percentage matched
≥1 m	10,250	0.2%
< 1 m & ≥ 0.25 m	487,675	10%
< 0.25 m & ≥ 0.15 m	2,141,025	47%
< 0.15 m	2,112,625	46%
Simulation	Extent (m ²)	Percentage matched
Multiple defence profile simulation	4,576,950	100%
50 th Percentile profile simulation	3,930,450	86%

Conclusions

- Using 50th percentile representative profile is much less computationally expensive when for running ensemble model scenarios
- The results obtained by using two representative sections with a 50th percentile profile for each, is a good match to results obtained from 45 profiles
- 86% of the inundation matches between the two scenarios and 93% of flood depths are within 0.25 m of each other.

Further Work

- Calculate a joint probability analysis using data from a model of the North Sea rather than wave buoy data
- Apply an ensemble of scenarios to this study area to simulate different wave and water combinations making up the same probability of occurrence
- Modify representative profile to simulate effect of improving beach defence resilience by increasing defence width, height and offshore bank width and height.