

Development of a Coastal Wave Energy Climatology

Jeff Hanson WaveForce Technologies LLC Coastal and Hydraulics Lab, USACE Kent Hathaway

USACE Field Research Facility, Duck NC

Coastal Wave Climate Research Questions

- Can we assemble a long-term coastal observation record?
- What are the climatic trends of wave energy from
 - Tropical Storms
 - Extratropical Storms
 - South Atlantic Storms
 - Trade Winds
 - Regional Weather

• How are each of these controlled by known weather oscillations (El Nino, North Atlantic Oscillation, etc.)?

Duck FRF Long-Term Wave Measurements

Stations

18m 1D Waverider: 1980-1996 18m 2D Waverider: 1996-present 1990-2012 8m Pressure Array: 48m NDBC Buoy: 1997-present 26m 2D Waverider: 2008-present 2008-present 6-11m AWAC Array:

Nearshore Acoustic Array (1.5-11 m depth)

18-m Datawell Waverider

48-m NDBC 44014

Hurricane Sandy: October 2012

18-m Depth Waverider Buoy (3 km Offshore)

Data Gaps

18m 1D Waverider:	1980-1996
18m 2D Waverider:	1996-2014
8m Pressure Array:	1990-2012
26m 2D Waverider:	2008-2014
6-11m AWAC Array:	2008-2014

55%	Gaps
7%	Gaps
5%	Gaps
17%	Gaps
18-28%	Gaps

Developing a Long-Term Record Target: 18m Station

FRF XShore Array

- Transform wave spectra from all stations to 18m depth
- Fill 18m gaps with transformed data
- Artificial Neural Net (ANN) modeling
 - Shallow water non-linear behavior
 - Multi-parameter inputs
 - Fast efficient processing

Spectral Validation

Energy-Freq Spectra

Hs Validation

Depth-Dependant Spectral Wave Power and Energy Calculations

Frequency Spectrum (1D) E(f) (m²/Hz)

Wave Power
$$W_p = \rho g \int E(f) \cdot c_g(f) df$$
 (W/m)

Group Velocity (d is water depth, k is wave number)

$$c_g = \frac{1}{2} \sqrt{\frac{g}{k}} \tanh(kd) \left(1 + \frac{2kd}{\sinh(2kd)} \right) \quad \text{(m/s)}$$

Total Wave Energy
$$E_t = \int w_p dt$$
 (J/m)

FRF 34-Year Gap-Filled Wave Record

FRF 34-Year Gap-Filled Wave Record

Wave System Classification

Wave System Classification

Sample Records 15-13 May 2009

- Wave partitioning combined with swell system tracking
- Sort wavefield energy by source type/region

Wave System Classification

Sample Records 15-13 May 2009

- Wave system classification scheme based on Hs/Tp/Dir attributes
- Applied to 23-year 2D wave record

Wave System Energy Budget

Wave System Energy Budget

Summer / Fall Coastal Storms

ONI: R = 0.4 NAO: R = -0.1

By-Passing Storms

Directional Classification

Summary

NC Wave energy dominated by coastal storms

- > Winter/North wave energy is trending down
- South wave energy is trending up
- Local wave energy is trending up
- NAO exhibits very weak influence on NC waves
- El Niño has a strong influence on NC waves
 - > El Niño events increase winter/spring wave energy
 - El Niño events decrease summer/southerly wave energy

Thank you...

Hurricane Sandy Waves hit the FRF Pier Photo Credit: Steven Vogt