Air-Sea Interaction in Extreme Weather Conditions

Niels Zweers, Hans de Vries, Vladimir Makin, Vladimir Kudryavtsev, Gerrit Burgers

KNMI, NL
Motivation

- Safety of the coast of the Netherlands for storm surge
- Models not prepared for $U_{10} \gtrsim 30$ m/s
- Might occur more frequently in a changed climate
- Investigate alternative drag relation
- Identical in NWP and storm surge model
Storm surge forecasts (in the North Sea)

\[\vec{\tau} = \rho_a C_D |\vec{u}_{10}| \vec{u}_{10} \]

\[p_{msl} \]
Alternative drag relations

\[C_{D10} \times 10^3 \]

- Powell et al. (2003)
- Holthuijsen et al. (2012)
- Charnock
- Extended Charnock
- Spray stress model

Air-Sea Interaction in Extreme Weather Conditions
Storm Surge Symposium, 10 Nov 2015
Extended Charnock relation

- Include the effect of spray and air-flow separation
- Build into HIRLAM
- Apply in the Gulf of Mexico
Hurricane tracks

Ivan (2004)

Katrina (2005)

- NHC obs
- Charnock
- New
- T+48
- T+72
- T+96
Hurricane intensity

Ivan

Katrina

Air-Sea Interaction in Extreme Weather Conditions
Storm Surge Symposium, 10 Nov 2015
But...

- Lower drag means lower storm surge

- Exchange of heat and moisture should be larger
Spray stress model

- Parametrization based on spray stress model
- Enhanced exchange of heat and moisture
- Artificial reduction of SSTs below the storm
Hurricane intensity

Ivan

Katrina

Observed (NHC)

KMZ2012

KMZ2012, SSTs reduced

Air-Sea Interaction in Extreme Weather Conditions

Storm Surge Symposium, 10 Nov 2015
Conclusions

- New drag relation produces realistic hurricane wind speed and pressure
- Momentum flux needs also update of heat and moisture fluxes
- Sea surface temperature also plays significant role
- Next step: couple ocean model
Thank you