MODIFYING AND IMPLEMENTING AN INVERSION ALGORITHM FOR WAVES FROM A BROAD-BEAM HF RADAR NETWORK

Elizabeth Ann Livermont, Jon K. Miller, and Thomas O. Herrington
Davidson Laboratory: Stevens Institute of Technology
Hoboken, New Jersey, U.S.A.
Overview

• Motivation/ Introduction
• HF Radar Description
• Methods
 • CODAR Analysis
 • Delft3D WAVE Model
• Results
• Conclusions
• Future Work

• Things to Keep in Mind
 • In Progress
 • (Focused on the method)
 • Limited Results

• Feedback is extremely appreciated
Introduction/ Motivation

• Nearshore gauges are...
 • Expensive
 • Prone to failure
 • Relatively rare

• Coastal engineers need accurate high-resolution wave information:
 • Wave height;
 • Wave period;
 • Wave direction; etc.

• Rutgers University & partners operate HF radars in the Mid-Atlantic Bight
 • ~12 years of data
 • All levels of data are archived

• When successful will provide a 2D wave field across the Mid-Atlantic Bight
Volume of Observations

<table>
<thead>
<tr>
<th>Month</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>569</td>
<td>742</td>
<td>575</td>
<td>705</td>
<td>744</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3335</td>
</tr>
<tr>
<td>2</td>
<td>634</td>
<td>663</td>
<td>546</td>
<td>672</td>
<td>625</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3140</td>
</tr>
<tr>
<td>3</td>
<td>676</td>
<td>699</td>
<td>579</td>
<td>738</td>
<td>611</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3303</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>718</td>
<td>450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1171</td>
</tr>
<tr>
<td>5</td>
<td>118</td>
<td>715</td>
<td>349</td>
<td>716</td>
<td>608</td>
<td>744</td>
<td>725</td>
<td></td>
<td></td>
<td>3975</td>
</tr>
<tr>
<td>6</td>
<td>623</td>
<td>718</td>
<td>269</td>
<td>684</td>
<td>715</td>
<td>714</td>
<td>720</td>
<td>652</td>
<td></td>
<td>5095</td>
</tr>
<tr>
<td>7</td>
<td>553</td>
<td>735</td>
<td>736</td>
<td>596</td>
<td>742</td>
<td>91</td>
<td>744</td>
<td>675</td>
<td></td>
<td>4872</td>
</tr>
<tr>
<td>8</td>
<td>604</td>
<td>738</td>
<td>556</td>
<td>433</td>
<td>429</td>
<td>120</td>
<td>741</td>
<td>599</td>
<td></td>
<td>4220</td>
</tr>
<tr>
<td>9</td>
<td>645</td>
<td>705</td>
<td>717</td>
<td>544</td>
<td>720</td>
<td>703</td>
<td></td>
<td></td>
<td></td>
<td>4034</td>
</tr>
<tr>
<td>10</td>
<td>651</td>
<td>735</td>
<td>738</td>
<td>723</td>
<td>738</td>
<td>670</td>
<td></td>
<td></td>
<td></td>
<td>4255</td>
</tr>
<tr>
<td>11</td>
<td>658</td>
<td>716</td>
<td>715</td>
<td>605</td>
<td>720</td>
<td>719</td>
<td></td>
<td></td>
<td></td>
<td>4133</td>
</tr>
<tr>
<td>12</td>
<td>653</td>
<td>260</td>
<td>741</td>
<td>212</td>
<td>742</td>
<td>719</td>
<td></td>
<td></td>
<td></td>
<td>3327</td>
</tr>
<tr>
<td>Grand Total</td>
<td>4505</td>
<td>7202</td>
<td>4472</td>
<td>6251</td>
<td>4303</td>
<td>1413</td>
<td>3040</td>
<td>8593</td>
<td>5081</td>
<td>44860</td>
</tr>
</tbody>
</table>

Data from nearshore wave gauge in Avalon, NJ (operated by Stevens)
HF RADAR DESCRIPTION

A Shore-Based Direction-Finding HF Radar:

The SeaSonde, developed by CODAR
MID ATLANTIC NETWORK

<table>
<thead>
<tr>
<th></th>
<th>5 MHz</th>
<th>13 MHz</th>
<th>25 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>U Mass</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHOI</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U Conn</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>URI</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stevens</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rutgers</td>
<td>17</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Delaware</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODU/CIT</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNC</td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

41 Stations in Total
What Is HF RADAR?

• RADAR = RAdio Detection And Ranging
• HF = High Frequency: 3 - 30 MHz or 100 - 10 m wavelength
• What Can Be Observed/Detected?
 • Currents
 • Most robust environmental data product from HF RADAR systems
 • First-order effect - sea echo from Bragg scattering
 • Waves
 • Second-order effect
 • Subject to perturbation theory limits - upper wave height limitation
 • Discrete “Targets”
 • Ships: dual use w/ current mapping (under development)
 • Ice Packs/Bergs (work done in 70’s - more being done currently)
Broad-Beam (SeaSondes) HF Radars

- Ocean wave spectrum is *homogeneous* over the range cell
- Waves are *fetch limited*; wave periods greater than 6 seconds from offshore are assumed non-existent.
- Wave refraction is ignored, and
- Subsequently waves are assumed to be deep water waves
Proof of Concept Site

Depth within SEAB Range Cell containing Monmouth ADCP

[Graph showing depth vs. distance from Monmouth]
Are improvements necessary?
CODAR ANALYSIS
Taking into consideration water depth

Addressing the issue of homogeneity over the range cell
METHODS

Utilize a SWAN model to generate a lookup table of 2D wave fields
• Curvalinear
 • M = 244
 • N = 190

• Includes:
 • Depth-induced breaking
 • Quad & Triad interactions
 • Bottom friction
 • Wind growth
 • Whitecapping

• One Month (March 2012)

Proof of Concept
Creating the lookup table

Take the average value of wave height or period, for each Range Cell, Time Step, Radar Site.

For example,
- Range Cell 2 @ Belmar = 0.21 m
- Range Cell 3 @ Belmar = 0.25 m, etc.

\[
x = \begin{pmatrix}
 Bel \, HS_{R_1}(t_1) & Bel \, HS_{R_2}(t_1) & \cdots & Bel \, DP_{R_{n-1}}(t_1) & Bel \, DP_{R_n}(t_1) \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 Bel \, HS_{R_1}(t_m) & Bel \, HS_{R_2}(t_m) & \cdots & Bel \, DP_{R_{n-1}}(t_m) & Bel \, DP_{R_n}(t_m)
\end{pmatrix}
\]
Extracting a 2D wave field

- Collect the wave characteristics generated by the relevant SeaSonde:
 - Construct a search table (format matches the lookup table)

\[
x = \begin{pmatrix}
\text{Bel } HS_{R1}(t_1) & \text{Bel } HS_{R2}(t_1) & \cdots & \text{Bel } DP_{R_{n-1}}(t_1) & \text{Bel } DP_{R_{n}}(t_1) \\
\vdots & \ddots & \vdots \\
\text{Bel } HS_{R1}(t_m) & \text{Bel } HS_{R2}(t_m) & \cdots & \text{Bel } DP_{R_{n-1}}(t_m) & \text{Bel } DP_{R_{n}}(t_m)
\end{pmatrix}
\]

- Utilizing an Euclidean distance between each observation
 - Find the best fit in the lookup table by minimizing the total distance

- Extract the corresponding 2D wave field from the lookup reference
Initial Results

- Looks promising
- But, a little knowledge is a dangerous thing

Initial Conclusions
- Approximately 25% improvement*
- Utilizing only wave characteristics does not result in a unique best fit
- SWAN model is not validated for this application
FUTURE WORK
Future Work

• Extend SWAN model
 • Entire WIS time frame (1980-2012)
 • One model for entire Mid-Atlantic Bight

• Better summary of lookup instances
 • Wave averages for 5-, 13-, and 25-MHz range cells
 • Incorporate existing current maps

• Combine depth effects & spatial inhomogeneity corrections

• Validation & Verification
 • SWAN Model
 • CODAR Corrected Measurements
Questions?

Elizabth A. Livermont
elivermo@stevens.edu
Stevens Institute of Technology
Hoboken, New Jersey, U.S.A.