Future Tropical Cyclone Flood Hazard: Impacts of Vegetation Change and Sea Level Rise

Estimated flooding during Hurricane Katrina (2005)

Estimated flood-elevation change due to 0.75 m of sea-level rise and vegetation loss since c. 1900

Jen Irish

Matt Bilskie, Scott Hagen, Don Resio, Yi Liu, Robert Weiss

November 13, 2015
Key West, FL

Future Tropical Cyclone Flood Hazard

Outline

- Motivation
- Joint probability method with optimal sampling (JPM-OS)
- Surge response functions
- Impact of vegetation migration and loss
- Screening approach using analytical solution
- Preliminary results
- Conclusions \& Future work

Future Tropical Cyclone Flood Hazard Motivation

- A $0.75-\mathrm{m}$ sea-level rise (SLR) leads to a $1.3-\mathrm{m}$ increase in flood elevation
- Changes to wetlands dominant factor

Future Tropical Cyclone Flood Hazard Joint Probability Method with Optimal Sampling (JPM-OS)

Joint probability method

Future Tropical Cyclone Flood Hazard JPM-OS

Joint probability matrix

$T_{R}\left(z_{\max }\right)=\left\{1-\int_{c_{p}} \int_{R_{p}} \int_{v_{f}} \int_{\theta} \int_{x_{o}} f\left(c_{p}, R_{p}, v_{f}, \theta, x_{o}\right)\left[H\left(z_{\max }-\left[\phi\left(x, c_{p}, R_{p}, v_{f}, \theta, x_{o}\right)+\varepsilon_{z}\right]\right)\right] d x_{o} d \theta d v_{f} d R_{p} d c_{p}\right\}^{-1}$
$f\left(c_{p}, R_{p}, v_{f}, \theta, x_{o}\right)=\Lambda_{1} \Lambda_{2} \Lambda_{3} \Lambda_{4} \Lambda_{5}$
$\Lambda_{1}=p\left(c_{p} \mid x_{o}\right)=\frac{1}{a_{1}\left(x_{o}\right)} \exp \left[-\frac{\Delta p-a_{o}\left(x_{o}\right)}{a_{1}\left(x_{o}\right)}\right] \exp \left\{-\exp \left[-\frac{\Delta p-a_{o}\left(x_{o}\right)}{a_{1}\left(x_{o}\right)}\right]\right\}$ (Gumbel Distribution)
$\Lambda_{2}=p\left(R_{p} \mid c_{p}\right)=\frac{1}{\sigma(\Delta p) \sqrt{2 \pi}} \exp \left\{-\frac{\left(\overline{R_{p}}(\Delta p)-R_{p}\right)^{2}}{2 \sigma^{2}(\Delta p)}\right\}$ (Normal Distribution)
$\Lambda_{3}=p\left(v_{f} \mid \theta\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{\left(\overline{v_{f}}(\theta)-v_{f}\right)^{2}}{2 \sigma^{2}}\right\}$ (Normal Distribution)

$$
\begin{aligned}
& \text { Return Period }= \\
& \left(\text { Annual Exceedance Probability) }{ }^{-1}\right. \\
& \text { e.g., } T_{R}=100-\mathrm{yr} \text { is same as } 1 \% \text { AEP }
\end{aligned}
$$

$\Lambda_{4}=p\left(\theta \mid x_{o}\right)=\frac{1}{\sigma\left(x_{o}\right) \sqrt{2 \pi}} \exp \left\{-\frac{\left(\bar{\theta}\left(x_{o}\right)-\theta\right)^{2}}{2 \sigma^{2}\left(x_{o}\right)}\right\}$ (Normal Distribution)
$\Lambda_{5}=f\left(\lambda, x_{o}\right)$

Assume sea-level rise (SLR) dominant (with respect to storm climate)

Future Tropical Cyclone Flood Hazard JPM-OS

Joint probability matrix

$$
f\left(p_{o}, R_{p}, v_{f}, \theta, x_{o}\right)=\Lambda_{1} \Lambda_{2} \Lambda_{3} \Lambda_{4} \Lambda_{5}
$$

Track angle 1

A cumulative distribution function is created by summing like responses (surges) \times their associated probabilities.
from M. Cialone

Accurate numerical integration requires 100,000s of storms \leftarrow Use optimal sampling

Future Tropical Cyclone Flood Hazard JPM-OS: Surge Response Functions (SRF)

General form for maximum surge response

$$
\begin{aligned}
& \mathrm{z}_{\text {nax }}(x)=\phi\left(x, x_{o}, c_{p}, R_{p}, \theta, v_{f}\right)+\varepsilon \\
& \varepsilon^{2}=\varepsilon_{\text {tide }}^{2}+\varepsilon_{\text {surge simulation }}^{2}+\varepsilon_{\text {waves }}^{2}+\varepsilon_{\text {winds }}^{2}+\ldots
\end{aligned}
$$

where:
ϕ is a continuous surge response function
x is location of interest
x_{o} is landfall location
c_{p} is hurricane central pressure near landfall
R_{p} is hurricane pressure radius near landfall
θ is hurricane track angle with respect to the shoreline
v_{f} is hurricane forward speed near landfall
ε is uncertainty in the surge response

Future Tropical Cyclone Flood Hazard JPM-OS: SRFs

$\lambda\left(x_{o}\right)=\left\{\begin{array}{c}0.05 L_{30}\left(x_{o}\right)-0.70 \text { when } L_{30}\left(x_{o}\right)<40 \mathrm{~km} \\ \frac{2.03}{L_{30}\left(x_{o}\right)-31.4}+0.88 \text { when } L_{30}\left(x_{o}\right) \geq 40 \mathrm{~km}\end{array}\right.$
$\zeta^{\prime}=\frac{\gamma \zeta}{\Delta p}+m_{2}\left(x, x^{\prime}\right)\left(\frac{P_{f a r}-c_{p}}{P_{f a r}-c_{p-\max }}\right)^{\alpha\left(x, x^{\prime}\right)}\left(\frac{R_{p} / L_{30}\left(x_{o}\right)}{\left[R_{p} / L_{30}\right]_{r e f}}\right)^{\beta\left(x, x^{\prime}\right)}$
$x^{\prime}=\frac{\left(x-x_{o}\right)}{R_{p}}-\lambda\left(x_{o}\right)+c H\left(\frac{\left(x-x_{o}\right)}{R_{p}}-\lambda\left(x_{o}\right)-1\right)\left(\frac{R_{p}}{L_{30}}\right)-F\left(1-\frac{R_{p}}{R_{\text {thres }}}\right) H\left(1-\frac{R_{p}}{R_{\text {thres }}}\right)$

Using 145 simulations for Texas coast: mean error $=-3$ to +1 cm RMS error $=11$ to 22 cm

Neglects:

- Wave setup
- Track angle
- Forward speed

Future Tropical Cyclone Flood Hazard JPM-OS: SRFs - Wave Setup, Track Angle, Forward Speed

Panama City, FL: Coastal bays

Applied at 259 locations using 38 simulations: mean error $=-12$ to +5 cm ,

RMS error $<50 \mathrm{~cm}$ at 96% and $<40 \mathrm{~cm}$ at 76% of locations

Future Tropical Cyclone Flood Hazard Conclusions \& Future Work

Conclusions (Preliminary)

- Response of future surge hazard to vegetation change is complex
- Shape of extreme-value distribution sensitive to vegetation change
- Magnitude of change in surge hazard 1 m or less

Future work

- Further evaluate sensitivity:

1. Vegetation state
2. Idealized bathymetry

- Evaluate changes in contributing joint-probability parameter space
- Significance of direct estimate versus added uncertainty
- Evaluate impact to flood plain (overland flow)

Questions?

www.coastal.cee.vt.edu

