14TH INTERNATIONAL WORKSHOP ON WAVE HINDCASTING AND FORECASTING/5th COASTAL HAZARDS SYMPOSIUM Key West, Florida, USA, Nov 8-13, 2015

Observed orbital velocity of extreme waves and directional spectrum

Takuji Waseda¹, Keiji Kiyomatsu¹, Wataru Fujimoto¹, Adrean Webb¹ Peter Jansen², Eric Schulz³, Alex Babanin⁴, Henrique Rapizo⁴ ¹University of Tokyo, Japan, ²CSIRO/Australia, ³Beureou of Meteorology,/Australia, ⁴Swinburn

University of Technology/Australia

1

Outline

- Observed horizontal particle velocity from tethered buoy near Japan (13th IWWHF)
- Horizontal particle velocity estimate from SOFS observation in the southern ocean
- Directional spectral estimate from tethered buoy
- Dependence of orbital velocity on spectral geometry
- Preliminary results from HOSM simulation
- Comparison of GPS wave measurement and accelerometer wave measurement

OBSERVED HORIZONTAL PARTICLE VELOCITY FROM TETHERED BUOY NEAR JAPAN (13TH IWWHF & ODYN2014)

WASEDA, T., et al. Deep water observations of extreme waves with moored and free GPS buoys. *Ocean Dynamics*, 2014, 64.9: 1269-1280.

JKEO & NKEO GPS buoy observation

Buoy Tracking Velocimetry

Orbital speed of non-breaking waves in a group

Degree of Nonlinearity (DON)

HORIZONTAL PARTICLE VELOCITY ESTIMATE FROM SOFS OBSERVATION IN THE SOUTHERN OCEAN

SOFS wave observation (Rapizo et al. 2015)

0.5

9

frequency (Hz)

Orbital speed of non-breaking waves in a group

Hmax (m)

Hmax/Hs 10

DIRECTIONAL SPECTRAL ESTIMATE FROM TETHERED BUOY

Comparison of wave models, and JKEO and NKEO K-TRITON buoy observations

- Observational data (GPS wave sensor)
 - JKEO (2009/9-2009/11)
 - NKEO (2012-2013)
- TodaiWW3-Japan5km

Directional spectrum is estimated from the observation by Extended Maximum Entropy Method

TodaiWW3-Japan5km (1994-2014)

NCEP/CFSR Wind

Webb presentation on 11/11 L4

JKEO Hs comparison

NKEO Hs comparison

JKEO Q_p and σ_{θ} comparison

NKEO Q_p and σ_{θ} comparison

DEPENDENCE OF ORBITAL VELOCITY ON SPECTRAL GEOMETRY

Orbital velocity and frequency bandwidth **NKEO & JKEO**

narrow

19

Orbital velocity and directional spreading NKEO & JKEO

PRELIMINARY RESULTS FROM HOSM SIMULATION

HOSM simulation of directional wave field

Higher Order Spectral Method (HOSM Dommermuth & Yue 1987; West et al. 1987).

JONSWAP spectrum $\gamma = 3.3$ $ak = 0.5 H_s k_p = 0.11$

Directional distribution $\cos^{N} \frac{\theta}{2}$; $N = 2 \sim 1000$

 $50 T_p \times 10 \text{ ensembles}$ $512(10 \lambda_p) \times 512(20 \lambda_p)$

Order of Nonlinearity M=1 (linear) M=2,3,5

Detecting maximum wave in a group Determine shape parameters Estimate local steepness Estimate orbital velocity

Fujimoto & Waseda 2014 WISE

HOSM estimation of DON

Orbital velocity and directional spreading SOFS

24

What does a constant Degree of Nonlinearity mean?

Lessons from freak wave research:

 Occurrence probability of large amplitude waves is enhanced when spectrum narrows

Conjecture:

 For broader spectrum, the mean of the observed extreme wave steepness lowers

From the HOSM simulation:

- Local steepness determines the DON, and not the spectral geometry
 Speculation:
- Structure of coherent wave group in random directional wave field does not depend on spectral geometry

COMPARISON OF GPS WAVE MEASUREMENT AND ACCELEROMETER WAVE MEASUREMENT

Estimating velocity from acceleration

Difference in the spectral shape of elevation; GPS wave sensor and accelerometer (MRU)

SOFS Observation 2015.3-2016.3

IN2015_V01 "Integrated Monitoring Observing System Time Series automated moorings for climate and carbon cycle studies southwest of Tasmania"

PI: Prof Tom Trull (ACE CRC)

March 22 – April 1 (10 days cruise)

Antenna enclosure

Simultaneous observation of GPS and accelerometer

- MRU 10 minutes every hour
- TriAXYS 20 minutes every two hours
- GPS 20 minutes every two hours

In collaboration w. Peter Jansen, Eric Schulz

Battery pack

Preliminary comparison of wave heights from TriAxys, MRU and GPS

Summary

- Orbital velocity of the extreme waves were estimated from the motion of the moored buoy
- The orbital velocity and the steepness of the extreme waves tended to decrease as the spectrum broadened
- The degree of nonlinearity $(U_{max}/C_p/ak_{max})$ showed statistically insignificant dependence on the spectral parameters
- Therefore, it is speculated that the structure of coherent wave group that forms in directional wave field may have some universal features, except for the crest length

Iwate model (2007.12-2013)

 $a = \int_{0}^{2\pi} \int_{0}^{\infty} \cos(\theta) F(\sigma, \theta) d\sigma d\theta$ 32

Estimation of velocity & position from accelerometer

Position estimate from MRU without any filter

