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Abstract 

Numerical wave propagation models are often used to hindcast wave conditions and predict the 

theoretical energy production from wave energy conversion (WEC) devices. It is widely acknowledged 

that numerical model suffer from bias’s and uncertainties which ultimately affect the final predictions of 

WEC power. In this case study, a Simulating WAves Nearshore (SWAN) model is used to predict sea 

states off the Canadian west coast and the triple collocation technique is applied to quantify the model 

result bias’s, and systematic and random errors. To analyze the error and calibrate the SWAN model, two 

in-situ collocated wave measurement devices are deployed; A TRIAXYS wave measurement buoy and a 

Nortek AWAC. The triple collocation technique is used to compare the significant wave height and 

energy period parameters over a three month period, from October to December 2014. The triple 

collocation technique assumes linear relationship between the measured value and true value, and outputs 

the bias, calibration slope and the measurement random error. This study implements two previously 

utilized calibration regimes, a single value and monthly calibration regime, as well as presenting two 

novel methods to improve the impact of the calibration; a bivariate calibration and a spectral calibration. 

Given the short period of data collection, the two standard calibration techniques resulted in negligible 

improvements in data correlation. The bivariate calibration regime, following the IEC wave resource 

histogram parameters, resulted in 5% and 29% improvements in the significant wave height and energy 

period correlations respectively. The spectral method suffered from high computational cost and lower 

performance improvements that the bivariate regime. Applying the improved wave resource assessment 

data to WEC energy production increased the energy generation over the 3 month period by 15.9%, and 

reduced the under prediction SWAN bias to just 0.30% (when compared against the AWAC data).  

Annual energy production differed by 6% between calibrated SWAN data and original data – a significant 

amount when assessing large scale wave energy production. 

  



 

 

 

1 Introduction 

Numerical wave propagation models are often used to hindcast wave conditions over long time 

timelines and over large spatial areas. The multiyear results from these numerical models are often used 

as the sole input to detailed wave resource assessments for the wave energy industry. The spatial and 

temporal distribution of the hindcasted seastates are subsequently used to predict the theoretical energy 

production from wave energy conversion (WEC) devices. However, it is widely acknowledged that 

numerical models suffer from systematic biases and random uncertainties, which ultimately can 

significantly affect the predictions of WEC generated power and the feasibility of proposed wave energy 

development projects.  

The numerical model biases and uncertainties result from a number of factors including, but not 

exclusive of, input boundary condition resolution, underlying physics assumptions, numerical errors, and 

insufficient bathymetric resolution. Additionally, many global wave models often assimilate current 

measurements from in-situ measurement devices [1], such as wave measurement buoys or acoustice wave 

and current profilers (AWAC), or remote measurements from satelite observations and radars. Thus, the 

inherent uncertainties within the numerical model can be compounded by uncertainities within the 

assimilated wave measurement data. Hence, it is import to be able to quantify both the errors and 

uncertainties associated with the model and the assimilated measurement data source, before utilizing the 

wave measurement to predict the power or annual energy productions from WEC’s. 

If three collocated measurements are available, the triple collocation technique has been widely used to 

estimate measurement errors and the systematic biases between three different data sources [2]–[7]. The 

technique is based on the assumption of a linear relationship between the measured value and true value, a 

normal distribution of error and the fact that the errors from each device are uncorrelated. Stoffelen [2] 

first used the triple collocation technique to estimate the error characteristics for each device and calibrate 

near surface wind speed from three collocated sources: wind buoys, an environmental forecast model, and 

European Remote-Sensing Satellite (ERS) scatterometer. Caires and Sterl [3] built on this work and 

applied the triple collocation technique to validate both significant wave height and wind speed fields 

from European Centre for Medium Range Weather Forecasts (ECMWF) re-analysis ERA-40 against 

wave measurement buoys, ERS-1 scatterometer, and Topex altimeter. In their work, device uncertainties 

and calibration constants were determined on both an annual and latitude based matrix. More recently, 

Janssen’s paper [4] compares wave height from ECMWF wave forecasting model to both buoy data and 

altimeter wave data from ERS-2. Janssen et al. suggest that monthly calibration parameters were 

necessary to capture the variation in the calibration coefficients. 

In order to assess the impact of model and device uncertainties on annual WEC energy production, this 

study investigates the impact of model and device uncertainty under four differing calibration regimes. 

Initially, the impacts of model calibration under the regimes suggested by both Caries and Sterl [5] and 

Janssen et al. [6] are quantified. Subsequently, two novel model calibration regimes are introduced and 

their performance quantified; one based on a bivariate distribution of significant wave heights and energy 

periods, while the other utilizes the entire frequency domain variance density spectrum. 

The paper is structured as follows: Section 2 details the database of SWAN, buoy and AWAC 

measurements used as inputs to the triple collocation technique. In Section 3, a brief overview of 

methodology applied as part of the triple collocation technique is presented and discussed. Section 4 

presents the calibration regimes investigated and the differences in the resulting bias, beta and uncertainty 

values are discussed. The correlation impact of the differing calibration regimes, and a discussion of 

regime limitations, is presented in Section 5. Section 6 explores the impact of the triple collocation 

method on wave energy period and presents results on the variation in energy production from wave 

energy converters. Section 7 and Section 8 discuss the inconsistencies in the study results and presents 

conclusion’s respectively.  



 

 

 

2 Wave Measurements and Models 

The West Coast Wave Initiative at the University of Victoria runs an unstructured Simulating WAves 

Nearshore (SWAN) model for the west coast of Vancouver Island in order to provide a 10 year hindcast 

of wave conditions [8]. SWAN is a third generation phase-averaged Eulerian numerical wave model 

designed to simulate the propagation of waves in shallow near-shore areas [9]. Within the region of 

interest for this triple collocation study, the model spatial resolution is ~ 100m/node, has 3 hr temporal 

resolution, the variance density spectrum features 36 frequency bins, between 0.035Hz and 1.00 Hz, and 

3° directional resolution [10].  The hindcast utilizes offshore wave conditions provided by the European 

Centre for Medium Range Weather Forecasts (ECMWF) and wind forcing inputs from the Fleet 

Numerical Meteorology and Oceanographic Centre (FNMOC) COAMPS model. 

In order to apply the triple collocation technique [5][6], two wave measurement devices were 

deployed. These include an AXYS Technologies TRIAXYS wave measurement buoy and a Nortek 

Acoustic Wave And Current (AWAC) profiler. These devices were collocated at Port Renfrew, British 

Columbia, Canada during September - December 2014 in ~ 30m of water. The TRIAXYS buoy utilizes 

rate gyros and accelerometers to record the buoy motions, due to surface interactions with incoming 

waves, and calculate the directional wave spectrum. Conversely, the AWAC is a seafloor mounted device 

and utilizes measurements of the fluid velocities close to the water surface in order to recreate the 

directional wave spectrum. The buoy data has a 20 minute temporal resolution with a 0.005 Hz spectral 

and 3° directional resolution, while the AWAC data is at a 1 hour temporal resolution and a 0.01 Hz 

spectral and 2° directional resolution.  

Figure 1 presents the significant wave height from the buoy, AWAC, and SWAN between October 1
st
 

and December 31
st
, 2014.  

 

Figure 1: Raw significant wave heights from SWAN model, AWAC and TriAxys buoy 
 

 Figure 2 illustrates the high degree of correlation between the two measurement devices (buoy and 

AWAC), while Figure 3 indicates the significant scatter when comparing the SWAN model against the 

AWAC data. The AWAC and buoy data feature a correlation of 0.97, a root mean square error (RMSE) 

of just 0.12 and a scatter index (SI) of 0.10. As shown in Figure 2, the linear fit (with a zero intercept) 

follow the perfect agreement line very closely. Conversely, a comparison of the AWAC and SWAN 

model data shows significant scatter (SI = 0.20) and has a lower correlation of 0.89. In general, the 

SWAN model linear fit line indicates a general under prediction of wave heights, increasing with height.   



 

 

 

 
Figure 2: Scatter plot for AWAC 𝑯𝒔 and buoy  𝑯𝒔 

 
Figure 3: Scatter plot for AWAC  𝑯𝒔 and SWAN  𝑯𝒔 

 

To calibrate the SWAN model, and quantify the bias and errors associated with each 

measurement device, the triple collocation technique will be utilized. Given that the two devices 

are measuring two different physical processes associated with waves, it is assumed that they 

have uncorrelated errors. 

3 Triple Collocation Methodology 

Triple collocation technique has been widely used to estimate uncertainty of measurements from three 

different, yet collocated, data sources. Triple collocation technique is based on the assumption of a linear 

relationship between the measured value and true value, and can be expressed in the following equations: 

 𝑋 = 𝛼𝑥 + 𝛽𝑥𝑇 + 𝑒𝑥 
𝑌 = 𝛼𝑦 + 𝛽𝑦𝑇 + 𝑒𝑦 

𝑍 = 𝛼𝑧 + 𝛽𝑧𝑇 + 𝑒𝑧 

(1) 

where 𝑇  is the true value,  𝛼  and 𝛽  are unknown calibration parameters representing bias and linear 

calibration coefficient (beta) respectively, 𝑒  is uncertainty of the data. Given that the true value is 

unknown, this method requires that one of the datasets is defined as the reference and the other two data 

sets will be calibrated it. However, as noted by Janssen at el.[6], the choice of T is doesn’t affect the 

results. Janssen et al. additionally removed the 𝛼 values from (1), arguing that significant wave height is a 

positive definite quantity and incorrect calibration constants may result in negative predictions of 

significant wave height. For this study, 𝛼 values were included, and the respective influence detailed in 

proceeding sections. The AWAC was defined as the reference dataset; hence the beta and bias will be set 

to 1 and 0 respectively.  

The first step removes of the bias from the datasets by introducing the following new variables, 

    𝑋′ = 𝑋 − 𝛼𝑥 
𝑌′ = 𝑌 − 𝛼𝑦  

𝑍′ = 𝑍 − 𝛼𝑧  

(2) 

 



 

 

 

A new set of equations, without T, result from inserting (2) into (1). The uncertainty term 𝒆 in (1) can be 

modified to: 

 𝑋′′ − 𝑇 =
𝑋′

𝛽𝑥
− 𝑇 =

𝑒𝑥

𝛽𝑥
= 𝑒𝑥

′′  

𝑌′′ − 𝑇 =
𝑌′

𝛽𝑦
− 𝑇 =

𝑒𝑦

𝛽𝑦
= 𝑒𝑦

′′  

𝑍′′ − 𝑇 =
𝑍′

𝛽𝑧
− 𝑇 =

𝑒𝑧

𝛽𝑧
= 𝑒𝑧

′′  

(3) 

By calculating the difference between any two of above equations, the true value can be eliminated: 

 𝑋′′ − 𝑌′′ = 𝑒𝑥
′′ − 𝑒𝑦

′′ 

𝑍′′ − 𝑌′′ = 𝑒𝑧
′′ − 𝑒𝑦

′′ 

𝑋′′ − 𝑍′′ = 𝑒𝑥
′′ − 𝑒𝑧

′′ 

(4) 

Error terms can then be calculated by multiplying any of the two equations above, with the assumption 

that all the covariances are equal to 0. This assumption is valid if the errors in the three collocated 

measurements are independent to each other. As shown in (5), the uncertainty term is independent from 

the choice of reference (where ̅  denotes mean value):  

 (𝑋′′̅̅ ̅̅ − 𝑌′′̅̅ ̅̅ ) ∙ (𝑍′′̅̅ ̅̅ − 𝑌′′̅̅ ̅̅ ) = (𝑒𝑥
′′ − 𝑒𝑦

′′) ∙ (𝑒𝑧
′′ − 𝑒𝑦

′′) = (𝑒𝑦
′′)

2
 

(𝑋′′̅̅ ̅̅ − 𝑍′′̅̅ ̅̅ ) ∙ (𝑌′′̅̅ ̅̅ − 𝑍′′̅̅ ̅̅ ) = (𝑒𝑥
′′ − 𝑒𝑧

′′) ∙ (𝑒𝑦
′′ − 𝑒𝑧

′′) = (𝑒𝑧
′′)2 

(𝑋′′̅̅ ̅̅ − 𝑍′′̅̅ ̅̅ ) ∙ (𝑋′′̅̅ ̅̅ − 𝑌′′̅̅ ̅̅ ) = (𝑒𝑥
′′ − 𝑒𝑧

′′) ∙ (𝑒𝑥
′′ − 𝑒𝑦

′′) = (𝑒𝑥
′′)2 

(5) 

Used the same methodology from Janssen et al [4], following the works of Marsden [11], a neutral 

regression can be used to calculated beta according to (6):  

 
𝛽𝑦 = (−𝐵 +

√𝐵2−4𝐴𝐶

2𝐴
)  

(6) 

where A = γ𝑋′𝑌′̅̅ ̅̅ ̅̅ , 𝛾 =
𝑒𝑥̅̅ ̅

𝑒𝑦̅̅ ̅
, B = 𝑋′2̅̅ ̅̅

− 𝛾𝑌′2̅̅ ̅̅
, C = −𝑋′𝑌′̅̅ ̅̅ ̅̅ . Of course, 𝛽𝑧 can be obtained by changing all the 

y terms to z in (6). The bias can then calculated from beta using: 

 𝛼𝑦 = �̅� − 𝛽𝑦�̅� 

𝛼𝑍 = �̅� − 𝛽𝑧�̅� 
(7) 

However, the above equations start with unknown parameters 𝛼𝑦  and 𝛼𝑧  and end with calculating the 

same parameters, therefore iterative method can be implemented using the following assumed initial 

values:  

 𝛼𝑦 = 𝛼𝑧 = 0 

𝛽𝑦 = 𝛽𝑧 = 1 
(8) 

 

The iterative processes ends when either of the bias, beta, or error variance convergence. For this study, 

convergence was based on the error variance.  

At this stage, it should be noted that Janssen et al. [6] removed the bias terms in (1), given that significant 

wave height is a positive definite quantity. Over the following sections, the impact of negative bias and 

monthly static calibration constants will be discussed. 



 

 

 

4 Triple Collocation Application Regimes 

As previously noted, the generic triple collocation technique has been applied to numerous oceanographic 

applications. For this study, a variety of differing calibration regimes were tested to determine which 

provided the best performance against the dataset. These regimes included:  

1) Single value calibration.   

2) Monthly calibration. 

3) Bivariate calibration. 

4) Spectral calibration.  

The buoy, AWAC and SWAN data from the period October 1
st
, 2014, 00:00 to December 31

st
, 2015, 

04:00 were used. It is acknowledged that a more extensive database would be valuable; unfortunately 

additional data is unavailable for this site.   

The correlation between the uncalibrated and calibrated significant wave height is used as the metric to 

evaluate the calibration performance, under the four differing regimes. Expansion to include energy 

period will occur in Section 5, once the best performing calibration regime is determined. As previously 

noted, AWAC data has been widely used to validate buoy measurements [5], [12] and it will be used as 

the primary reference data source for all regimes. 

4.1  Single calibration  

Caires and Sterl [5] suggest calibrating data on both and annual and latitude basis. Given the stationarity 

and short data time period investigated in this study, this would result in a single value to calibrate the 

three datasets. Following this application regime, Table 1 presents the calibration parameters in terms of 

bias, beta and error variance for each dataset, with respect to the corresponding reference dataset.  

Table 1:  𝑯𝒔 calibration results under the single value calibration regime 

Reference Data Test Bias (m) Beta Variance (m
2
) Normalized SD (%) 

AWAC AWAC 0 1 3.46e-04 1.45 

SWAN 0.032 0.99 5.41e-02 18.0 

Buoy 0.002 1.00 2.60e-04 1.26 

SWAN AWAC -0.032 1.01 3.42e-04 1.45 

SWAN 0 1 5.37e-02 17.9 

Buoy -0.031 1.01 2.60e-04 1.26 

Buoy AWAC -0.150 0.99 3.47e-04 1.46 

SWAN 0.030 0.99 5.42e-02 18.0 

Buoy 0 1 2.60e-04 1.26 
 

The AWAC and buoy have bias and beta values close to 0 and 1 respectively, when compared against 

the bias and beta associated with the SWAN data. Moreover, the normalized standard deviation (SD) of 

error for AWAC and buoy are within 1.5%, while SWAN has values around 18%. This confirms the 

visual observations from Figure 1; that the AWAC and buoy is more accurate than data from SWAN. 

Additionally, it can be noted from Table 1, that the measurement error variance is independent from the 

choice of reference dataset.   

As noted by Janssen et al, in the single value calibration regime, there are several occasions when the 

measurement bias is significantly negative; this could lead to negative significant wave heights once the 

measurements have been calibrated. In this calibration regime, the validity of the triple collocation 

technique, with a bias factor, is questionable and the methods followed by Janssen et al. may be better 

suited.  



 

 

 

4.2 Monthly calibration  

Following the methodology presented by Janssen et al.[6], the second test regime investigates monthly 

significant wave height calibrations of the three datasets. The three months of data were divided and 

independently used in the triple collocation procedure. Table 2 presents the monthly bias, beta and error 

variance results, while Figure 4 and Figure 5 provide a visual representation of the data. The bias and beta 

values vary for each month by month while the variance remains fairly constant.  The device 

measurement error variance estimates are similar to those determined in the single calibration regime. 

Table 2:  𝑯𝒔 calibration results under the monthly calibration regime 

Month Test Bias (m) Beta Variance (m
2
) 

October AWAC 0 1 1.60e-04 

SWAN 4.01e-02 0.982 5.91e-02 

Buoy 8.81e-04 1.00 3.13e-04 

November AWAC 0 1 5.02e-04 

SWAN -1.63e-03 0.983 4.66e-02 

Buoy 6.62e-03 1.00 1.94e-04 

December AWAC 0 1 4.52e-04 

SWAN 2.20e-02 1.00 5.50e-02 

Buoy 1.90e-03 1.00 1.96e-04 
 

 
Figure 4: Monthly bias values for SWAN and buoy data 

 
Figure 5: Monthly beta values for SWAN and buoy data 

 

As in the single value calibration regime, the presence of negetive bias values is noted in Table 2. 

However, the bais values are significantly minimized from those presented in the single value calibration 

regime, thus reducing the risk of calibration resulting in negetive significant wave height values.  

4.3 Bivariate calibration 

For this section, the triple collocation technique will be applied on two different SWAN model datasets, 

one at the baseline model completed at 3hr resolution [13] and another a specific model run at 1 hr 

temporal resolution.  

4.3.1 Application to baseline SWAN dataset 

In an effort to improve the performance of the triple collocation technique and the correlation between 

the datasets, the third test regime applied the triple collocation technique to the individual wave height 

and period bins utilized in a standard wave resource assessment histogram. The International 

Electrotechnical Commission (IEC) has released a series of standards and technical specifications to help 

the wave energy conversion (WEC) industry develop and provide consistency across the main device 

architectures and global development efforts. The IEC Wave Resource Assessment and Characterisation 

Technical Specification [14] calls for a bivariate histogram of annual wave conditions, based on 0.5m 

significant wave height and 1s energy period bins.  



 

 

 

Table 3: Number of observation hours for baseline SWAN model (Red: non-convergent cell or cell with less than 50 

occurrences; Green: convergence cell; Yellow: no data in the cell) 
  Energy Period - Te (s) 

  1 3 5 7 9 11 13 15 

H
s 

(m
) 

0-1.0 0 1 65 100 78 4 0 0 
1.0-2.0 0 0 23 59 218 98 14 2 
2.0-3.0 0 0 0 6 29 25 7 1 
3.0-4.0 0 0 0 0 2 2 0 0 
4.0-5.0 0 0 0 0 0 0 0 0 

 

For the initial efforts within this test regime, the baseline 3 hr SWAN model results were used. The 

significant wave height data was binned according the IEC technical specification [14], and the triple 

collocation technique applied to individual bins in the histogram. As a result, significant wave height and 

energy period specific bias, beta and error variance values were determined. However, due to a low 

number of occurrences for specific wave height and period bins, the triple collocation technique was 

unable to converge and no reliable results were found. By doubling both the significant wave height and 

energy period bins widths, in order to increase the number of data points in each bin, allowed for 

convergence to occur in multiple histogram bins. Table 3 presents the convergence results for the reduced 

histogram.  

To reduce the error variance caused by the lack of data and convergence, all bins which did not 

converge or featured less than 50 occurrences was deemed of questionable value and were removed from 

the analysis. Unfortunately, this filtering only left 3 bins with sufficient number of data points and quality. 

The bias and beta in the convergence bin are shown in the Table 4, Table 5, Table 6, and Table 7. It is 

noticed both the SWAN and buoy datasets generally have beta values closer to 1 and bias value closer to 

0 as the significant wave height increases from 0.5m to 1.5m. This indicates greater correlation with the 

measurements from the AWAC at larger wave heights. As expected, the buoy data continues to present 

bias and beta values closer to 1 and 0 respectively, when compared against the SWAN data.  

 
Table 4: SWAN model beta obtained under bivariate 

calibration regime (3 hour time step SWAN) 

 
Table 5 : Buoy beta obtained under bivariate calibration 

regime (3 hour time step SWAN) 

 

 
Table 6: SWAN model bias obtained under bivariate 

calibration regime (3 hour time step SWAN) 

 
Table 7: Buoy bias obtained under bivariate calibration 

regime (3 hour time step SWAN) 

4.3.2 Application to hourly SWAN dataset 

Given the low number of converged bins in the previous section, and in an effort to improve the impact 

of the triple collocation method, a study specific SWAN model run with 1 hour time resolution was 

completed. As a result, the number of available SWAN data points was tripled and the standard 

histogram, with 0.5 m 𝐻𝑠 and 1s 𝑇𝑒 resolution, could be used. The hourly convergence matrix is shown in 

Table 8 below. 

1 3 5 7 9 11 13 15

0.50 1.1415 1.2772

1.50 0.9917

2.50

3.50

SWAN 

Beta

Te (s)

H
s 

(s
)

1 3 5 7 9 11 13 15

0.50 1.0006 1.0073

1.50 0.9968

2.50

3.50

H
s 

(s
)

Buoy Beta Te (s)

1 3 5 7 9 11 13 15

0.50 0.0088 0.0129

1.50 0.0198

2.50

3.50

H
s 

(s
)

SWAN   

Bias

Te (s)

1 3 5 7 9 11 13 15

0.50 0.0000 -0.0006

1.50 0.0003

2.50

3.50

H
s 

(s
)

Buoy Bias Te (s)



 

 

 

Table 8: Number of observation hours for hourly SWAN model (Red: non-convergent cell or cell with less than 50 

occurrences; Green: convergence cell; Yellow: no data in the cell) 
  Energy Period - Te (s) 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

H
s 

(m
) 

0-0.5 0 0 0 0 8 8 8 20 30 10 0 0 0 0 0 0 
0.5-1 0 0 0 1 86 91 85 192 142 48 10 2 0 0 0 0 
1-1.5 0 0 0 0 39 39 45 79 225 209 80 40 4 2 0 0 
1.5-2 0 0 0 0 0 1 8 33 111 119 101 62 29 10 4 0 
2-2.5 0 0 0 0 0 0 3 14 28 51 40 27 9 5 1 0 
2.5-3 0 0 0 0 0 0 0 3 5 8 4 0 6 2 1 0 
3-3.5 0 0 0 0 0 0 0 1 1 4 2 2 2 3 0 0 
3.5-4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

 

With the increased temporal resolution SWAN dataset, the number of cells with both greater than 50 

occurrences and achieve convergence increased to 11 from the 3 in the previous test regime. The resulting 

calibration parameters for convergence bins are shown in the tables below.  

Table 9: SWAN model beta obtained under bivariate calibration regime (1 hour time step SWAN) 

 

Table 10: SWAN model bias obtained under bivariate calibration regime (1 hour time step SWAN) 

 

Table 11: Buoy beta obtained under bivariate calibration regime (1 hour time step SWAN) 

 

Table 12: Buoy bias obtained under bivariate calibration regime (1 hour time step SWAN) 

 

 

6 7 8 9 10 11 12 13

0-0.5

0.5-1 1.0276 1.1276 1.2284

1-1.5 0.9506 1.0107 1.0477

1.5-2 0.9061 0.9079 0.9731 1.0022

2-2.5 0.8751

2.5-3

H
s 

(m
)

SWAN Beta
Energy Period (s )

6 7 8 9 10 11 12 13

0-0.5

0.5-1 0.0083 0.0089 0.0121

1-1.5 0.0060 0.0058 0.0079

1.5-2 0.0015 0.0023 0.0039 0.0021

2-2.5 0.0011

2.5-3

H
s 

(m
)

SWAN Bias
Energy Period (s )

6 7 8 9 10 11 12 13

0-0.5

0.5-1 1.0094 1.0058 1.0076

1-1.5 1.0015 1.0016 0.9989

1.5-2 1.0000 0.9962 0.9960 1.0006

2-2.5 0.9925

2.5-3

H
s 

(m
)

Buoy Beta
Energy Period (s )

6 7 8 9 10 11 12 13

0-0.5

0.5-1 0.0007 0.0004 -0.0009

1-1.5 -0.0004 -0.0002 0.0001

1.5-2 -0.0004 0.0010 -0.0006 0.0000

2-2.5 -0.0004

2.5-3

H
s 

(m
)

Buoy Bias
Energy Period (s )



 

 

 

In terms of general observations, it appears that both the SWAN and buoy datasets feature beta values 

larger than 1 in low ℎ𝑠 regions and lower than 1 values in the larger ℎ𝑠 region. Moreover, the bias’ for the 

SWAN dataset tend to decrease as ℎ𝑠  increases, indicating that SWAN over predicts ℎ𝑠  in low ℎ𝑠 

situations and under predicts in larger ℎ𝑠 situations. This confirms the visual observations made in Figure 

1. While the buoy calibration does result in negative bias values, the magnitudes are extremely small and 

would generally be unable to cause calibrated negative significant height values. Thus, when applied in 

the correct calibration regime, the inclusion of the bias terms in (1) seems justified. 

Table 19 presents the normalized error SD’s for each bin. If a single value regime was used, as per 

Caires and Sterl [5], the overall normalized error SD is 17.9% - slightly larger than the mean normalized 

error SD of 15% below.  

 

Table 13: Hs normalized error SD using bivariate regime 

4.4 Spectral calibration 

In an effort to further increase the performance of the triple collocation technique, the final regime 

attempts to determine the calibration parameters for each variance density bin within the frequency 

domain spectrum. The non-directional spectrums are binned into variance density or energy bins and the 

triple collocation technique was applied within each bin. This method significantly increased the size of 

the analysed data set size and allowed for better convergence. Figure 6 illustrates that convergence was 

achieved within the majority of the energy and frequency bins.   

 
Figure 6: Spectral calibration regime convergence (1 hour time step SWAN)  

 

The calibration parameters are shown in the figures below. It can be observed that the beta values for 

SWAN are bigger than 1 for most of the bins (reaching a maximum at 20), the bias values become 

increasingly negative in the lower frequency bands and the normalized error SD rises rapidly in the high 
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frequency/high energy bins. As may be expected, the buoy maintains beta values close to 1 (with the 

exception of low frequency/low energy bins), maintain a bias of ~ 0 and only featured significant variance 

in low frequency bins.   

 
Figure 7: Buoy beta obtained under spectral  

calibration regime  

 
Figure 8: SWAN beta obtained under spectral  

calibration regime 

 
Figure 9: Buoy bias obtained under spectral  

calibration regime 

 
Figure 10: SWAN bias obtained under spectral  

calibration regime 

 
Figure 11: Buoy normalized error SD obtained under 

spectral  calibration regime 

 
Figure 12: SWAN normalized error SD obtained under 

spectral  calibration regime 

 



 

 

 

In Figure 12, the normalized error SD for SWAN model is larger than 30% in majority of the bins, and 

reaches more than 100 percent in specific locations, which is significantly higher than the 18% for Hs 

obtained from single value test regime (See Table 1). 

5 Test Regime Performance 

5.1 Single calibration  

Figure 13 shows the AWAC measurements, the raw uncalibrated SWAN model outputs and the 

calibrated SWAN model results.  The raw and calibrated SWAN model results are almost identical and no 

improvement is realized. As a result, it is determined that the triple collocation technique provides little to 

no improvements in the performance of the SWAN model under the single value calibration regime. The 

correlation between the two datasets remained constant at 0.897 and the RMSE constant at 0.234. The 

only significant change resulting from the calibration was a reduction in the mean bias from 2cm to 3mm.  

 
Figure 13:  𝑯𝒔 values under the single value calibration regime 

 

The triple collocation technique relies on the assumption of a normal distribution of error. As a double 

check, the SWAN model error SD resulting from the triple collocation technique is plotted in Figure 14 

below. The yellow region represents a single SD on the SWAN model data, while the blue region 

indicates a double application of SD on the SWAN model data. Based on the assumption of a normal 

distribution of error, 95% of the AWAC data points should be included within the blue band. 94.3% of 

measured AWAC data points fall within the ideal 95
th
 percentile confidence interval. Correspondingly, 

71.4% of measured data points fall within the 67
th
 percentile. This quick double check provides 

confidence that the error is normally distributed and the assumption is valid. 

 

Figure 14: Comparison of ideal SWAN model confidence intervals against the AWAC dataset 
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5.2 Monthly calibration  

Applying the monthly triple collocation parameters presented in Table 2, the SWAN model data was 

calibrated and the improvements, in terms of additional correlation, quantified. As shown in Figure 15 

and Table 14, the resulting improvements were minimal. Table 14 illustrates the marginal improvements 

in correlation (~ 0.12%) when comparing the calibrated SWAN and AWAC datasets. RMSE 

improvements were undetectable. 

 
Figure 15:   𝑯𝒔 for model calibration regime 

 

Table 14: Correlation for Triple Collocation Method 

Correlation Original Datasets Calibrated Data Set Improvement 

SWAN vs AWAC 0.897 0.899 0.12% 

SWAN vs Buoy 0.897 0.897 0.13% 

AWAC vs Buoy 0.999 0.999 0.00% 

5.3 Bivariate calibration  

The bivariate calibration testing regime was applied to two different SWAN datasets; one at the baseline 

3 hour temporal resolution and another at 1hour temporal resolution.  

Baseline SWAN model with 3 hour resolution: 

Unfortunately, the baseline SWAN model suffered from a lack of data points due to the short device 

deployment period and the 3hr temporal resolution.  As a result, triple collocation convergence results 

were only achieved in three out of seventeen 𝐻𝑠-𝑇𝑒  bins. This represents only a small portion of the 

available data. Regardless, the SWAN, AWAC and buoy datasets were calibrated, based on the bias and 

beta values, and the correlations between the three data sets before and after the calibration are shown in 

Table 15.   

Table 15: Correlation between datasets under the bivariate calibration regime  

Correlation Original Datasets Calibrated Data Set Improvement 

SWAN vs AWAC 0.858 0.891 3.99 

SWAN vs Buoy 0.857 0.891 3.95 

AWAC vs Buoy 0.997 0.997 0.01 
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The bivariate calibration technique results in a noticeable improvement in the correlation statistics. 

However, a 3.99% increase may not be sufficiently valuable to justify the increased computational 

requirements of the triple collocation method.    

SWAN model with 1 hour resolution: 

 
Figure 16:   𝑯𝒔 for bivariate test regime  

 

To improve the convergence results from the baseline SWAN model, the dataset was increased three-

fold by rerunning the SWAN time at 1 hour resolution. The result dataset allowed for the triple 

collocation technique to achieve convergence in 62% of entire dataset. Additionally, as shown in Table 

16, the use of the hourly SWAN data allows for ~5.1% increase in correlation between the calibrated 

SWAN and AWAC datasets. Figure 16 visually illustrates the improvements in the 𝐻𝑠 timeseries. 

Table 16: Correlation for datasets under the bivariate calibration regime  

Correlation Original Datasets Calibrated Data Set Improvement 

SWAN vs AWAC 0.856 0.900 5.14% 

SWAN vs Buoy 0.856 0.894 4.44% 

AWAC vs Buoy 0.961 0.964 0.31% 

5.4 Spectral calibration  

In the final test regime, the frequency dependent spectral variance density spectrum is calibrated, rather 

than the significant wave height. However, as the calibration results in Table 17 show, this calibration 

regime resulted in a slight reduction in performance when compared with the bivariate calibration regime. 

This is compounded by the much greater computational cost of the calibration regime. 

Table 17: Correlation between datasets under the spectral calibration regime (2206 pairs with 1 hour resolution) 

Correlation Original Datasets Calibrated Data Set Improvement 

SWAN vs AWAC 0.891 0.921 3.37 % 

SWAN vs Buoy 0.890 0.921 3.48 % 

AWAC vs Buoy 0.997 0.993 -0.40 % 
 

Figure 17 below shows the significant overcorrection that occurred during the first two week of 

November. As a result of the spectral calibration technique, the calibrated SWAN model now predicts 

significant wave height of 6.8m, while the AWAC only recorded waves of 3.3 m. 
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Figure 17:   𝑯𝒔 for the spectral calibration regime 

 

To further investigate the possible reasoning for the reduced performance of the spectral calibration 

regime, the correlation in each energy-frequency bin is calculated and shown in Figure 18. The majority 

of bins have correlation values less than 0.3, a significant reduction from the 0.89 correlation for 𝐻𝑠 in 

uncalibrated dataset. If the correlation and errors strongly depend on energy and frequency level, it is 

expected that higher correlations would be evident in specific bins. Thus, it is postulated that other 

unexplored factors may have more significant influence on error variance, other than the frequency and 

energy level, which makes the binning non-directional spectrum to energy and frequency bins rather 

limited in value.  

 

Figure 18:  Correlation between AWAC and SWAN in each energy-frequency bin 

5.5 Test regime performance conclusions 

Based on the results presented in the previous sections, it was determined that utilizing the bivariate 

distribution calibration technique yield, utilising the hourly SWAN model data, is recommended as 

technique which provides the best combination of calibration improvements and computational 

efficiency. This technique will be utilized for the remainder of the report. 
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6 Wave Energy Converter Power Production 

For the wave energy industry to mature and begin to provide power to electrical grids, highly resolved 

and accurate assessments of annual electrical energy production are a necessity. Such assessments are the 

foundation for a developer’s unit cost calculations and business planning, for a utility’s reserve costing 

plans, and for regulator’s cost-benefit analyses of large scale wave energy converter (WEC) activities.  

The accuracy of any WEC energy production assessment depends on two areas of knowledge: the 

characterization of the wave resource, and the process for calculating the WEC power generation in the 

charted wave conditions.  

Annual energy production estimates are calculated by multiplying the annual bivariate histogram of 

wave conditions by a WEC power matrix; which provides estimates of the WEC power generation for 

specific histogram bins.  As a result, an accurate assessment of the wave conditions is paramount. 

Numerical models, such as SWAN, are often used to create the resource bivariate histograms [15]–[17]. 

Hence it is important to understand and be able to quantify the uncertainties and bias’s associated with the 

numerical model of choice. 

In the following sections, the impact of calibrating the resource bivariate histogram, based on the results 

of the triple collocation technique, will be explored and quantified. 

6.1 Wave Energy Period Calibration 

Given that the bivariate histogram requires values of both 𝐻𝑠 and𝑇𝑒, the same methodology used in the 

biavariate histogram calibration regime is applied to the energy period measurements. Table 18 indicates 

the significant performance improvements that occur when applying the triple collocation technique to the 

energy period values. As expected, the SWAN model correlation improves great against the AWAC and 

buoy datasets (29 and 26% respectively). Compared to the correlation improvement for  𝐻𝑠 , the 

improvement for 𝑇𝑒 is significant. 

Table 18: Calibration result for 𝑻𝒆 

Correlation Original Datasets Calibrated Data Set Improvement 

SWAN vs AWAC 0.727 0.939 29.2% 

SWAN vs Buoy 0.729 0.922 26.5% 

AWAC vs Buoy 0.962 0.973 1.09% 
 

To further investigate the factors that result in this significant improvement in correlation, the 

normalized error SD in each bin is shown in Table 19. For 𝑇𝑒 errors, it is apparent that the normalized 

error SD increases dramatically as the wave period decreases. This indicates that the measurement error in 

𝑇𝑒 strongly depends on both 𝑇𝑒 and 𝐻𝑠. As a result, significant improved correlation results from using 

binned method. If a single value regime was used, as per the suggestions of Caires and Sterl [5], the 

overall normalized error SD is ~ 23% - significantly larger than the mean of 10% in Table 19 

Table 19: Normalized error SD for Te 
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Figure 19 presents the AWAC, uncalibrated and calibrated 𝑇𝑒  SWAN values during November and 

December 2014. The significantly improved representative of the SWAN model 𝑇𝑒 values is immediately 

evident.  

 

Figure 19: 𝑻𝒆 calibration using bivariate calibration regime  

6.2 Application to WEC Power Matrix 

To investigate the improvement in energy production estimation for a generic WEC, the calibrated and 

uncalibrated SWAN model results, obtained from test regime three, are multiplied by the power matrix 

shown in Table 20 to calculate energy production. Readers interested in the development of the power 

matrix are referred to [13], [18]. Note that following results only apply to the calibrated data values – all 

non-calibrated data points are removed from the analysis or given a value of zero.   

Table 20: WEC power matrix 

 

With the AWAC measurements as the reference dataset, the power production, correlation and bias for 

SWAN and buoy are shown in Table 21. As previously discussed, the triple collocation calibration 

method significantly increased the SWAN 𝐻𝑠 and 𝑇𝑒  correction. Through the calibration of the SWAN 

model outputs, the expected energy production increased by 2.3 MWhr or by 15.9% - a significant 

measure in WEC industry.  
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Table 21: SWAN calibration and energy production results 

 

SWAN Buoy AWAC 

Raw Calibrated % Improvement Raw Calibrated % Improvement Raw 

𝑇𝑒 (Correlation %) 62.8 85.8 36.7 99.6 99.6 0.01 
 

 𝐻𝑠 (Correlation %) 86.3 90.8 5.26 94.9 96.0 1.22 
 

Energy Production (MWhr) 14.5 16.8 15.9 16.5 16.5 0.01 16.5 

Energy Production Bias (MW) -2.00 0.30 85.0 0.00 0.00 0.00 
 

 

Calibrated and raw uncalibrated SWAN model power time series are shown in Figure 20. While the 

calibrated SWAN model correlates better with the AWAC reference dataset, it is noticeable that the 

calibrated SWAN model over predicts power production as several time during the 3 month period. The 

discussion in Section 7 will provide additional discussion around these over predicted values. 

 

Figure 20: Calibrated SWAN model power production 

The detailed statistical comparison between the calibrated and original power time series is shown in 

Table 22. The calibrated power correlation is improved by 10%, while bias drops from -1.44 kW to 

0.26kW. 

Table 22: Calibrated data power time series comparison 

 Calibrated Power Original Power 

Mean Value (kW) 12.0 12.0 

Bias to AWAC (kW) 0.26 -1.44 

RMSE 7.19 7.64 

Scatter Index 0.60 0.64 

Correlation 0.80 0.72 

Pairs 1376.0 1376.0 

6.3 Impact of Annual WEC Energy Production 

In order to estimate the impact of calibrating the SWAN model on annual energy production estimates, 

rather than just the 3 month data collection period, the annual wave resource histogram for 2014 was 

calibrated using the 11 convergence histogram bins in Table 13 - which accounts for 62% of wave 

conditions during 2014. Using the calibration parameters obtained from bivariate calibration regime, the 

calibrated histogram is shown in Table 23. As a result of the calibration, the resulting histogram is more 

diffuse and values are spread across a larger number 𝐻𝑠 and 𝑇𝑒 bins.  
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Table 23: Calibrated SWAN Histogram

 

 

Figure 21 plots the time-series of power production from both calibrated and original data. It is noted 

that the calibration generally increases the under predicted larger waves during winter, and decreases the 

over predicted smaller waves during the summer months. The resulting annual energy production (purely 

on the calibrated seastates) decreases from 32.6 MWhr to 30.5 MWhr, a gross reduction of 6.4 %. It is 

noted that negative bias values in Table 10 never result in a negative significant height value, thereby 

justifying the inclusion of bias in (1). 

 
Figure 21: Calibrated and original SWAN data for entire year 

7 Discussion 

As shown in Figure 20 and Figure 22, the calibrated significant wave heights occasionally perform 

worse than their uncalibrated counterparts. For example, in Figure 22, raw SWAN model over predicts 

the 3.5m peak on November 6
th
, 2014 by ~0.25 meter, yet the calibrated SWAN over predicts the peak by 

1m. Similar behaviour is noted on December 21st. 

During both of these storm events, the number of bivariate histogram bin occurrences is relatively low 

and results in contradictory results. The 3.25m 𝐻𝑠 bin containing both these storm events contains only 

contains five observation hours. As shown in Table 24, SWAN over predicts 𝐻𝑠 in two out of five hours 

data and under predicts 𝐻𝑠 in the other three hours. Therefore, the triple collocation technique will 

calibrate the data in the 3.25m bin by increasing the significant wave height values.  

Table 24: Conflicting correlation bias’s for single bivariate bin 

Date &Time Nov 6, 22:00 Nov 6, 23:00 Nov 7, 00:00 Dec 21, 04:00 Dec 21, 05:00 Average 

AWAC 3.17 3.02 3.28 3.10 3.11 3.14 

SWAN 3.42 3.23 2.73 2.31 2.37 2.812 

Bias 0.251 0.212 -0.553 -0.793 -0.736 -0.324 
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Figure 22: AWAC, uncalibrated SWAN, calibrate SWAN, and number of observation hours 
 

This result can be attributed to two factors; Firstly, the assumption behind the bivariate calibration 

regime is that measurement error of wave measurement devices and numerical models only depend on the 

significant wave height and energy period of the wave. However, in reality, this measurement error can be 

affected by multiple factors such as currents, local wind, multi-modal seastate, and other influencing 

factors. Secondly, larger sample size in individual bin is needed to reduce the effect from random outliers 

and obtain a normal distribution for error.   

8 Conclusion 

Numerical wave propagation models are often used to hindcast wave conditions and predict the 

theoretical energy production from wave energy conversion (WEC) devices. It is widely acknowledged 

that numerical model suffer from bias’s and uncertainties which ultimately significantly affect the final 

predictions of WEC power. In this case study, a Simulating WAves Nearshore (SWAN) model is used to 

predict sea states at Canada west coast off Vancouver Island and the triple collocation technique is 

applied to quantify the model result bias’s, and systematic and random errors.  

This study implemented two previously utilized calibration regimes and two novel calibration regimes. 

The single value and monthly calibration regime were first presented by Caires and Sterl[5] and Janssen 

et al. [6] respectively. While the calibrated SWAN models resulting from the first two methods did not 

result in improved model performance, they highlighted the need for larger datasets and the confirmed 

that the error was normally distributed – a key assumption of the triple collocation technique.  

The bivariate calibration regime resulted in the greatest improvement in significant wave height 

correlation (5.14%), with the more computationally intensive spectral calibration regime only achieving 

2.5% improvement. The results mean 0.30 correlation between the calibrated SWAN model and AWAC, 



 

 

 

across the entire frequency domain variance density spectrum, from the spectral calibration regime is well 

below the 0.89 from the raw uncalibrated 𝐻𝑠 values thus indicating the frequency and variance density do 

not capture all factors which influence the model uncertainties.  

In accordance with the calibration regime results, it was determined that the bivariate calibration method 

outperformed the other investigated regimes was utilized for the remainder of the study. Applied to 𝑇𝑒 , 
SWAN / AWAC correlation improved by 29%. Applying the resulting improved wave resource 

assessment data to WEC power matrix increased the 3 month energy production by 15.9% and reduced 

the under prediction SWAN bias to just 0.30% (when compared against the AWAC data).  If the 

calibration seastates were applied on an annual basis, the annual energy production differs 6 percent 

between calibrated SWAN data and original data – a significant amount when assessing large scale wave 

energy production. 
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