A two-scale approximation for wave-wave Interactions in operational wave forecast models

Will Perrie, Bash Toulany, Don Resio and Aron Roland
Bedford Institute of Oceanography
University of North Florida, USA
Tech. Univ. of Darmstadt, Germany
What are the objectives of the project?

1. New wave model using new formulations for efficient quadruplet (nonlinear) wave-wave interactions representation
2. Tests for issues regarding wave transitions: waves and swell, turning winds, shallow water…
3. Tests for real North Atlantic storms
1: New wave model using new efficient formulations for nonlinear wave physics.

- Two-Scale Approximation (TSA)
- fetch-limited growth and TSA characteristics
- example of hurricane Juan (2003)

Summary

1. Implemented TSA in WW3 and WWM
2. Tests with different source terms: ST1 ~ ST4
3. Reliable results for ‘academic’ JONSWAP tests
4. "fetch- and duration-limited growth"
5. Turning winds: ongoing test …
6. N Atlantic tests with hypothetical constant winds
7. Computational efficiency improved
8. Optimization of TSA code is ongoing.

Acknowledgements: Panel on Energy R & D, NOPP ONR.
Wave generation and growth…

a balance equation …

$$\frac{\partial E(f, \theta)}{\partial t} = -\vec{c}_g \cdot \vec{\nabla} E(f, \theta) + \sum_k S_k(k, \theta)$$

where

- \(\vec{c}_g \) = group velocity
- \(S_{in} \) = wind input
- \(S_{ds} \) = wave dissipation
- \(S_{nl} \) = nonlinear transfer due to wave-wave interactions
For internal transfer of wave action (or energy) in the spectrum at n_1 (e.g. at k_1) via wave-wave interactions by k_2, k_3, k_4 - Hasselmann (1962), Zakharov (1966)

$$\frac{\partial n_1}{\partial t} \equiv S_{nl} = \int \int T(k_1, k_3) \, dk_3$$

where

$$T(k_1, k_3) = 2\int [n_1 n_3 (n_4 - n_2) + n_2 n_4 (n_3 - n_1)] C(k_1, k_2, k_3, k_4) \theta(|k_1 - k_4| - |k_1 - k_3|) \frac{\partial W}{\partial n}^{-1} \, ds,$$

TSA – Two-Scale Approximation

$$n_i = n_i \text{[broad-scale]} + n_i \text{[local-scale]} ; \ i = 1, 2, 3, 4$$

Neglect $n_2 \text{[local-scale]}$ and $n_4 \text{[local-scale]}$

[Resio and Perrie 2008; Perrie & Resio 2009]
JONSWAP $\gamma=1$ with Hasselmann-Mitsuyasu directional:
(a) broad- and local-scale terms normalized by f^{-4},
(b) 1-d comparison of DIA, WRT and TSA, (c) 2-d action density n_j,
(d) $S_{nl}(f,\theta)$ results from DIA (e) WRT, (f) TSA. $f_p=0.1$, $\alpha=0.0081$, $\sigma_A=0.07$, $\sigma_B=0.09$.
JONSWAP sheared spectrum with Hasselmann-Mitsuyasu directional:
(a) broad- and local-scale terms normalized by f^{-4},
(b) 1-d comparison of DIA, WRT and TSA,
(c) 2-d action density n_i,
(d) $S_{nl}(f,\theta)$ results from DIA (e) WRT (f) TSA.
$f_p=0.1$, $\alpha=0.0081$, $\sigma_A=0.07$, $\sigma_B=0.09$.
WW3 – with ‘old’ ST1: fetch-limited growth

6 hr
WW3 – with ‘old’ ST1: fetch-limited growth

12 hr
WW3 – with ‘old’ ST1: fetch-limited growth

18 hr
WW3 – with ‘old’ ST1: fetch-limited growth

24 hr

DIA

FBI

TSA
WW3 – with ‘old’ ST1: fetch-limited growth

30 hr
WW3 – with ‘old’ ST1: fetch-limited growth

36 hr
WW3 – with ‘old’ ST1: fetch-limited growth

42 hr
WW3 – with ‘old’ ST1: fetch-limited growth
WW3 – with ‘old’ ST1: fetch-limited growth
1-point time integration

WWM (Roland et al., 2012) with **ST4**
From Ardhuin et al. (2010)

WW3 (Tolman, 2009) with **ST2**
From Tolman + Chalikov (1996)
Ongoing issue: turning winds by 90° at 48 hr

WRT with ST1

original TSA with ST1
Multiple spectral peaks - mTSA

Broad-scale term parameterization…?

$$F(k)_{Norm} = F(k) \times k^{2.5} / \beta$$
[Resio&Perrie, 1989; Resio et al. 2004…]

Should be $$\beta \sim 1/\Delta f \sum[F(k) \times k^{2.5}]_{\text{equilibrium range}}$$

But equilibrium range is hard to define when $$f_{p1}$$ and $$f_{p2}$$ are close…

So let $$\beta = F(k) \times k^{2.5} |_{f_s} \ldots$$
for the first peak …
Ongoing issue: turning winds by 90° at 48 hr

WRT with ST1

New double-peak dTSA with ST1
Hurricane Juan (2003)

- Wave at 44258: $H_s \approx 9.2m$
- Winds at 44258: $\sim 27.5 \text{ m/s}$, at 2-3 AM UTC 29 Sept.
- Sea elevation at 44258: 1.9 m MSL
- 1.64 m at Point Pleasant Park
Hurricane Juan wave heights, H_s

DIA
FBI
difference DIA-FBI

~10%
Hurricane Juan wave heights, H_s

DIA: Sig. Wave Heights at 20030928 17

FBI: Sig. Wave Heights at 20030928 17

DIA - WRT: Sig. Wave Heights at 20030928 17

$\text{difference} \ DIA\text{-}FBI$

$\sim 15\%$
Hurricane Juan wave heights, H_s

DIA

FBI

difference DIA-FBI

$\sim 15\%$
Hurricane Juan wave heights, Hs

DIA

FBI

difference DIA-FBI

~15%
WW3 – constant U10 – 55 hr ‘old’ ST1

ST1 – wamCy3 physics
WW3 – constant U10 – 55 hr ‘new’ ST4

ST4 – ‘new’ Ardhuin et al. IFREMER physics
Computational time

- Alternate frequency, angles & interaction points can speed up TSA about 30-40 \times or more
- Presently, best accurate results are 20 \times DIA
- Optimization of TSA code is ongoing

DIA WRT dTSA,a
Summary

1. Implemented TSA in WW3 and WWM
2. Tests with different source terms: ST1 ~ ST4
3. Reliable results for ‘academic’ JONSWAP tests
4. " " fetch- and duration-limited growth
5. Turning winds: ongoing test …
6. N Atlantic tests with hypothetical constant winds
7. Computational efficiency improved
8. Optimization of TSA code is ongoing.

Acknowledgements: Panel on Energy R & D, NOPP ONR.