The Two-Scale Approximation: Wave-Wave Interactions For Detailed Balance Models

Presented by Christopher Bender, Ph.D., P.E., D.CE Co-Authors: Donald T. Resio and Charles E. Long October 30, 2013

www.taylorengineering.com

Delivering Leading-Edge Solutions

Motivation

- The Two-Scale Approximation (TSA) has been shown to provide robust and efficient estimation of nonlinear, fourwave interactions
- Nonlinear, four-wave interactions are critical to developing realistic 2-D spectra required by operational forecasting models
- Goal: Develop new algorithms and approaches within the TSA to:
 - 1. increase efficiency
 - 2. allow application within operational forecasting models

Methodology

- Extend TSA model while maintaining degrees of freedom required of third-generation wave models
- Evaluate TSA results with comparisons to Full Boltzmann Integral (FBI) solution (compare to exact solution)
- Demonstrate TSA model performance for realistic spectra
- Document TSA model execution times in comparison to FBI and Discrete Interaction Approximation (DIA) solutions

Conclusions

- Testing of new TSA approach shows good comparisons to FBI and significant improvement to DIA
- Testing shows reasonable computational speeds and efficiency
- After additional testing, new algorithms should allow implementation in operational spectral wave models

www.taylorengineering.com

Delivering Leading-Edge Solutions

Presentation Overview

- History of TSA development
- Need for improved nonlinear, four-wave interactions within operational models
- Extension of TSA within this effort
- Comparisons to existing methodologies
 - Non-linear source terms
 - Computational speed and cost
- Future efforts

History of TSA Development

• Start with general wind-wave radiative transfer equation:

$$\frac{\partial E(f,\theta)}{\partial t} + \mathbf{c}_g \cdot \nabla E(f,\theta) = S_{in}(f,\theta) + S_{nl}(f,\theta) + S_{ds}(f,\theta)$$

- E(f,θ) is wave spectral energy (actually, sea-surface displacement variance) density
- Conventionally, the four-wave interaction is characterized in terms of action density N(k,θ) rather than energy density

$$\frac{c_{g_1}}{(2\pi)^2 k_1} S_{nl}(f_1,\theta_1) = \frac{\partial N(k_1,\theta_1)}{\partial t} = \int_0^{2\pi} \int_0^\infty T(k_1,\theta_1,k_3,\theta_3) k_3 dk_3 d\theta_3$$

www.taylorengineering.com

Delivering Leading-Edge Solutions

History of TSA Development

Implement Two-Scale Approximation (TSA) Approach

 $N(\boldsymbol{k}_i) = \widehat{N}(\boldsymbol{k}_i) + N'(\boldsymbol{k}_i)$

- As shown by Resio and Perrie (2008)
- Original four action density triplets expand to 32 triplets
 - four triplets consisting purely of elements of N (k)
 - four triplets consisting purely of elements of N'(k)
 - 24 triplets involving mixed elements
- The approximation proposed by Resio and Perrie (2008) is based on the argument that triplets containing perturbation elements N'(k₂) and N'(k₄) contribute sufficiently less than the remaining triplets to the locus integral

- Move to 3rd Generation spectral wave models built on the tenet of allowing spectra to freely evolve similar to natural spectra
- This requires the implemented approaches to contain enough degrees of freedom to capture natural spectra evolution
- The TSA approach maintains the required degrees of freedom to allow natural spectral transformation

www.taylorengineering.com

Delivering Leading-Edge Solutions

- Perrie and Resio (2009)
- Hurricane Wilma
- 1D Energy Decomposition
- (normalized by ω^4)

www.taylorengineering.com

Delivering Leading-Edge Solutions

- Perrie and Resio (2009)
- Hurricane Wilma
- 1D Energy Transfer
- (m²/Hz/s)

www.taylorengineering.com

Delivering Leading-Edge Solutions

- Perrie and Resio (2009)
- Hurricane Wilma
- 1D Energy Transfer
- (m²/Hz/s)

- TSA applied for more realistic spectra than previous efforts
- Directional distribution of Resio et al. (2011) allows evaluation of model performance for more natural seas
- Natural spectra show azimuthal spreads that are narrowest near spectral peak frequencies and broaden at both lower and higher frequencies
- Broadening found to relate to wave age (or spectral peakedness)

Extension of TSA Model in Current Effort

 Natural spectra show azimuthal spreads that are narrowest near spectral peak frequencies and broaden at both lower and higher frequencies

www.taylorengineering.com

Delivering Leading-Edge Solutions

Extension of TSA Model in Current Effort

ഗ

- Directionally integrated source terms
- E(f) conventional **JONSWAP** form

y = 3.3

a) Standard template grid and b) Refined Template Grid

www.taylorengineering.com

Delivering Leading-Edge Solutions

Extension of TSA Model in Current Effort

Evolution of Methodology

- Recent efforts have applied a "template" approach to map the spectra
 - Allows application of TSA approach for spectra developed in nature or a numerical models
- Template approach works, but has its limitations in terms of accuracy and efficiency
 - Trouble when spectra peak occurs between two values within template
- Current and future work is taking a new approach that interpolates the spectral shape

Future Efforts

- Recent efforts have shown the TSA to provide accurate and efficient results
- However, accuracy and efficiency improvements can occur moving away from the template-based approach
- In addition, improved efficiency in coding algorithms can provide additional run time improvements
- Dorukhan Ardag will expand on these current and future efforts

Summary

- Testing of new TSA approach shows good comparisons to FBI and significant accuracy improvement compared to DIA
- Testing shows improved computational speeds and efficiency; but one order of magnitude slower than the DIA
- After additional testing, new algorithms should improve efficiency and allow implementation in operational spectral wave models
- More to follow...

www.taylorengineering.com

Delivering Leading-Edge Solutions

THANK YOU