Wave Information Sensitivity for Upper Ocean Structure under Typhoon Condition

Kyoto University
Junichi Ninomiya
Nobuhito Mori
Tomohiro Yasuda
Hajime Mase

USGS
J.C. Warner
Motivation

Air Press. [hPa]

Tide [D.L., m]

Wind Speed [m/s]

Wind Direction

Swell

$H_{1/3}$ [m]

Time [day]

$z_0 = \alpha_{CH} \frac{u_*^2}{g}$

$K_k \frac{\partial k}{\partial z} = \alpha_{CB} u_*^3$

-> Wave information?
Methodology

• Momentum bulk formulas

\[z_0 = \max \left(\frac{\alpha CH}{\epsilon} (u_*)^2, z_{0_{\text{min}}} \right) \]
\[\frac{z_0}{H_s} = A \left(\frac{H_s}{L_p} \right)^B \]
\[\frac{z_0}{L_p} = \frac{C}{\pi} \left(\frac{u_*}{C_p} \right)^D \]
\[\frac{z_0}{H_s} = \frac{E(u_*/C_p)^F} \]

Coupling Model

Air

\(WRF \)

Wind, Pres.,
Radiation,
Humidity, SST

Wind, Wave

Sea

\(ROMS \)

Current, Sea
Surface Height,
Wave

Wave

\(SWAN \)

+ Air side roughness + Sea side roughness + TKE flux
Conclusions

• Numerical experiments for typhoon using four bulk formulas were carried out.
• Sensitivity of bulk formulas were found
 – Distribution according to direction from typhoon center
 – Large influence of wave information on current velocity, sensible and latent heat, and vertical wind profile
Typical Proposed Bulk Formulas at Sea Surface

1. Charnock (1955): Friction Velocity

\[z_0 = \max \left(\frac{\alpha_{CH}}{g} (u_*)^2, z_{0\text{min}} \right) \]

\[\alpha_{CH} = 0.018 \]

\[\alpha_{CH} = 0.011 + 0.125(0.018 - 0.011)(u - 10.0) \]

\[\alpha_{CH} = 0.011 \]

\[\frac{z_0}{H_S} = A \left(\frac{H_S}{L_p} \right)^B \]

\[A = 1200, \quad B = 4.5 \]

Hs: Wave height, Lp: Wave length

\[\frac{z_0}{L_p} = \frac{C}{\pi} \left(\frac{u_*}{C_p} \right)^D \]

\[C = 25.0, \quad D = 4.5 \]

Cp: Wave velocity

\[\frac{z_0}{H_S} = E \left(\frac{u_*}{C_p} \right)^F \]

\[E = 3.35, \quad F = 3.4 \]

\[u_* = \frac{k u_{\text{ref}}}{\log(z_{\text{ref}}/z_0)} \]

\[\tau = \rho_a u_*^2 \]
Model Setup

- **Initial, Boundary Condition**
 - WRF
 - NCEP FNL (Final) Operational Global Analysis data
 - Resolution: 1 degree, 6 hour
 - ROMS
 - JCOPE2 (JAMSTEC)
 - Resolution: 1/12 degree, 1 day
 - SWAN
 - WW3 (NOAA Reanalysis)
 - Resolution: 1/2 degree, 3 hour

- **Bulk formula at the surface**
 - Air side roughness
 - Ocean side roughness
 - TKE flux
Model Setup for TC Melor (2009)

- **Period**
 - 2009/9/30 – 10/8
 - Coupling Interval: 600s

- **Domain**

<table>
<thead>
<tr>
<th>Model</th>
<th>Resolution</th>
<th>Horizontal grids</th>
<th>Vertical grids Directions etc.</th>
<th>Dt [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRF</td>
<td>12km</td>
<td>338x270</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>ROMS</td>
<td>12km</td>
<td>195x190</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>SWAN</td>
<td></td>
<td></td>
<td>Dir.: 24 Freq.: 24 (0.05-0.5Hz)</td>
<td>75</td>
</tr>
</tbody>
</table>
Comparison between Best Track and CT

2013/10/30 Wave Workshop
Comparison between Best Track and CT

- **SLP [hPa]**
- **U_{10} [m/s]**
- **Radius [km]**

- Best Track
 - Model with Charnock

Analysis Period
Coupled model

2013/10/30 Wave Workshop
Results

Air side roughness

Ch: Charnock （Friction velocity）
TY: Taylor and Yelland （Wave slope）
Oo: Oost （Wave age – Wave length）
Dr: Drennan （Wave age – Wave height）

2013/10/30 Wave Workshop
Friction Velocity, Sensible/Latent heat flux
(time and direction averaged)

2009/10/6 18:00 – 10/7 00:00 UTC

Z0 by
Charnock
Taylor-Yelland
Oost
Drennan

Oost formula estimates peak value at closer to center of typhoon.

Wave based formulas estimate large friction velocity and heat flux.
Drag coefficient is a good indicator of how roughness influences momentum transfer at the air-sea interface.
Current Velocity, TKE
(time and direction averaged)

2009/10/6 18:00 – 10/7 00:00 UTC

Ch, TY, Dr estimate similar distribution.

Oo estimate large current velocity.

H. Vel.: Shade
TKE: Contour
Wave direction agree with wind direction in front side, but disagree in rear side.
In front side, Ch, TY and Dr estimate similar distribution. In rear side, formulas with wave information estimate large friction velocity and heat flux.
Rear side

Friction Velocity, Sensible/Latent Heat Flux

2009/10/6 18:00 – 10/7 00:00 UTC (Moving direction: North)

In front side, Ch, TY and Dr estimate similar distribution. In rear side, formulas with wave information estimate large friction velocity and heat flux.
Current Velocity at Sea Surface

2009/10/6 18:00 – 10/7 00:00 UTC

Bulk formulas except Oo estimate similar distribution in front side, but wave based formulas estimate 10 – 30 % larger peak velocity than wind based formula in rear side.
In rear side, Ch estimates smaller current velocity.
Wave based Formulas estimate wider and deeper current distribution.
Conclusions

• Numerical experiments using four bulk formulas of air side roughness were carried out.
 • Oost formula estimated larger friction velocity than the other formulas.
• Radial direction averaged value from typhoon center
 – Large influence of wave information
 • Friction velocity, sensible and latent heat flux
 – Small influence
 • Typhoon features, wind speed, current velocity, wave
• Distribution according to direction from typhoon center
 – Large influence
 • Front side: Current velocity in the distance from typhoon center
 • Rear side: Friction velocity, heat flux, current velocity
 – Small influence
 • Front side: Almost all parameters
 • Rear side: Wind speed, wave
• Improvement of parameterization gives significant impact on large scale atmosphere and ocean circulation
The end

Project 2013
Air-sea interaction measurements for typhoon

We have accumulated more than 6 typhoon data by the tower. We are going to compare the model with observed data.

Ocean observatory Tower
by Kyoto University

2013/10/30 Wave Workshop