Environmental contour method: An approximate method for obtaining characteristic response extremes for design purposes

Sverre Haver & Kjersti Bruserud, Statoil ASA
Gro Sagli Baarholm, Det Norske Veritas
Rule requirements for characteristic design response

- Characteristic response, x_c, are specified by requirements regarding the annual probability, q, of exceeding the characteristic value.

- Ultimate limit state (ULS): $q \leq 10^{-2}$ (per year)

- Accidental limit state (ALS): $q \leq 10^{-4}$ (per year)
Sources of inherent randomness

• Long term variability of slowly varying weather characteristics, e.g. significant wave height, H_s, and spectral peak period, T_p.

Possible description:

$$f_{H_s T_p}(h, t) = f_{H_s}(h) f_{T_p|H_s}(t|h)$$
Sources of inherent randomness

• Long term variability of slowly varying weather characteristics, e.g. significant wave height, H_s, and spectral peak period, T_p.

Possible description:

$$ f_{H_sT_p}(h, t) = f_{H_s}(h) f_{T_p|H_s}(t|h) $$

• Short term variability of 3-hour (or 30 minute) maximum given the weather condition, i.e.:

$$ F_{X_{3h}|H_sT_p}(x|h, t) $$
Sources of inherent randomness

- Long term variability of slowly varying weather characteristics, e.g. significant wave height, Hs, and spectral peak period, Tp.

Possible description:

\[f_{HsT_p}(h, t) = f_{Hs}(h) f_{T_p|Hs}(t|h) \]

- Short term variability of 3-hour (or 30 minute) maximum given the weather condition, i.e.:

\[F_{X_{3h}|HsT_p}(x|h,t) \]

- Long term distribution of \(X_{3h} \):

\[
F_{X_{3h}}(x) = \int_h \int_t F_{X_{3h}|HsT_p}(x|h,t) f_{HsT_p}(h,t) dt dh
\]

Target response:

\[
x_q = F_{X_{3h}}^{-1} \left(1 - \frac{q}{2920} \right)
\]
Environmental contour method

1. Determine contours from $f_{H_sT_p}(h, t)$.
Environmental contour method

1. Determine contours from $f_{HsT_p}(h, t)$.

2. Find worst sea state along e.g. 10^{-2} - annual probability contour for response under consideration.

![Graph showing Hs versus Tp contour lines with data points and lines for different probability levels.]
Environmental contour method

1. Determine contours from $f_{H_s T_p}(h, t)$.

2. Find worst sea state along e.g. 10^{-2} annual probability contour for response under consideration.

3. Establish distribution function for X_{3h} for the worst sea state, i.e. design sea state (DSS):
 $$F_{X_{3h}|DSS}(x|DSS).$$
Environmental contour method

1. Determine contours from $f_{H_sT_p}(h, t)$.

2. Find worst sea state along e.g. 10^{-2} annual probability contour for response under consideration.

3. Establish distribution function for X_{3h} for the worst sea state, i.e. design sea state (DSS): $F_{X_{3h}|DSS}(x|DSS)$.

4. Estimate $x_{0.01}$ by:

$$x_{0.01} = F_{X_{3h}|DSS}^{-1}(\alpha)$$

where typically $\alpha = 0.85 - 0.90$
Why should it work?

• Let us assume that the 3-hour maximum response is a deterministic function of significant wave height and spectral peak period:

\[x_{3h} = g(h, t) \]
Why should it work?

- Let us assume that the 3-hour maximum response is a deterministic function of significant wave height and spectral peak period: \(x_{3h} = g(h, t) \)

- Lines for constant response is shown in the same figure as the 10^{-4} – annual probability contour.
Why should it work?

• Let us assume that the 3-hour maximum response is a deterministic function of significant wave height and spectral peak period: \(x_{3h} = g(h, t) \)

• Below lines for constant response is shown in the same figure as the \(10^{-4} \) – annual probability contour.

\[x_{0.0001} = 400 \] (we can think of this as the median response in a vary narrow extreme value distribution). Design sea state (DSS) is shown on contour.
Why should it work?

- Let us assume that the 3-hour maximum response is a deterministic function of significant wave height and spectral peak period: \(x_{3h} = g(h, t) \)

- Below lines for constant response is shown in the same figure as the 10\(^{-4}\) – annual probability contour.

- \(x_{0.0001} = 400 \) (we can think of this as the median response in a very narrow extreme value distribution).

- In reality, the 3-hour extreme will be of an inherent random nature. The median will be too small. We have to go to a higher percentile. How high depends on the relative importance of the short term variability. Experiences indicate that this is rather similar for a broad range of problems. Good estimates are often obtained selecting the 0.90-0.95 fractile (for \(q = 10^{-4} \)).
What must be fulfilled for the method to work?

• The dominant part of long term variability must be carried by the selected weather characteristics.
What must be fulfilled for the method to work?

- The dominant part of long term variability must be carried by the selected weather characteristics.

- The extreme response along the q_1 - contour must be larger than the extreme response along the q_2 - contour if $q_1 < q_2$.

If this is not fulfilled, some sort of a full long term analysis should be preferred.
What must be fulfilled for the method to work?

• The dominant part of long term variability must be carried by the selected weather characteristics.

• The extreme response along \(q_1 \) contour must be larger than the extreme response along \(q_2 \) contour if \(q_1 < q_2 \).

If this is not fulfilled, some sort of a full long term analysis should be preferred.

• For a typical response problem \(\text{cov} \) for \(X_{3h} \) is in the 0.1 – 0.25. \(\alpha = 0.85 - 0.9 \) often ok when \(q = 10^{-2} \).

For loads from breaking wave impacts, the \(\text{cov} \) of \(X_{3h} \) is 0.5 – 1.0 !!! Method may work – but one will most proably have to adopt high fractiles.

\(\Rightarrow \) A long term analysis is possibly to be preferred?
Challenge: Modelling T_p conditionally on H_s

- T_p given H_s is assumed to follow a log-normal model, parameters are $\mu = E(\ln T_p | H_s)$ and $\sigma^2 = \text{Var}(\ln T_p | H_s)$.
Challenge: Modelling T_p conditionally on H_s

- T_p given H_s is assumed to follow a log-normal model, parameters are μ and σ^2.
- Estimating μ is not to critical, but uncertainties are introduced.
Challenge: Modelling T_p conditionally on H_s

• T_p given H_s is assumed to follow a log-normal model, parameters are μ and σ^2.

• Estimating μ is not to critical, but uncertainties are introduced.

• Estimating σ^2 outside range of data is a challenge!

\[
\bar{t}_p = \exp\{\mu + 0.5\sigma^2\}
\]

\[
\sigma_{T_p} = \bar{t}_p \sqrt{\exp\{\sigma^2\} - 1} \approx \bar{t}_p \sigma
\]
Uncertainties in standard deviation of T_p given H_s
Uncertainties in standard deviation of T_p given H_s

We need:

* More data of extreme sea states (not so easy).

* Better understanding of accuracy of hindcast T_p.
Consequence of spreading uncertainty
Part II: Can contour method be used in a GoM hurricane climate?

- We consider all hurricanes exceeding some threshold.
Part II: Can contour method be used in a GoM hurricane climate

• We consider all hurricanes exceeding some threshold.

• The basic response variable is hurricane maximum response, Y. This variable is carrying the short term variability, i.e.:

$$F_{Y \mid hurricane \ characteristics}(y \mid hurricane \ characteristics)$$
Part II: Can contour method be used in a GoM hurricane climate

• We consider all hurricanes exceeding some threshold.

• The basic response variable is hurricane maximum response, Y. This variable is carrying the short term variability, i.e.:

\[F_Y \mid \text{hurricane characteristics}(y \mid \text{hurricane characteristics}) \]

• When applying the environmental contour method we would characterize a hurricane (for the purpose of a analysis of wave induced response) by three parameters:

\[H_{sp} = \text{maximum significant wave height of the storm}, \quad T_{pp} = \text{spectral peak period associated with } H_{sp} \quad \text{and } D_p = \text{duration of the most severe part of hurricane}. \]

These carry the long term variability:

\[f_{H_{sp}T_{pp}D_p}(h, t, d) \quad \text{(In long term analysis these are replaced by } \bar{Y} \quad [\text{mpm of } Y].) \]
Part II: Can contour method be used in a GoM hurricane climate

• We consider all hurricanes exceeding some threshold.

• The basic response variable is hurricane maximum response, \(Y \). This variable is carrying the short term variability, i.e.:

\[
F_Y | \text{hurricane characteristics} (y| \text{hurricane characteristics})
\]

• When applying the environmental contour method we would characterize a hurricane (for the purpose of an analysis of wave induced response) by three parameters: \(H_{sp} \) = maximum significant wave height of the storm, \(T_{pp} \) = spectral peak period associated with \(H_{sp} \) (and \(D_p \) = duration of the most severe part of hurricane). These carry the long term variability:

\[
f_{H_{sp}T_{pp}D_p} (h, t, d) \quad (\text{In long term analysis these are replacer } \tilde{Y} \quad \text{[mpm of } Y \text{].})
\]

• If the two sources of inherent randomness have the same relative contribution to total variability for a broad range of response cases, the contour method may well be a useful approximate method for hurricane governed areas also.
Modelling of joint distribution of H_{sp} and T_{pp}
Modelling of joint distribution of H_{sp} and T_{pp}

Challenge:

Limited amount of independent hurricane data within an area of say $1^\circ \times 1^\circ$
Contour & example results

- Duration of hurricane maximum is taken to be 30 minutes.
• Duration of hurricane maximum is taken to be 30 minutes.

• For three response cases we have found the worst combination of H_{sp} and T_{pp}.

Contour & example results
Contour & example results

- Duration of hurricane maximum is taken to be 30 minutes.
- For three response cases we have found the worst combination of H_{sp} and T_{pp}.
- By comparing contour approach with long term analysis we have indicated what percentile we should adopt of the 30-minute extreme value distribution to match long term results.
• Duration of hurricane maximum is taken to be 30 minutes.

• For three response cases we have found the worst combination of H_{sp} and T_{pp}.

• By comparing contour approach with long term analysis we have indicated what percentile we should adopt of the 30-minute extreme value distribution to match long term results.

• For the cases we considered, target percentile for obtaining 10^{-2} – response was varying from 0.88 to 0.97 with an average value of 0.94.
Contour & example results

- Duration of hurricane maximum is taken to be 30 minutes.

- For three response cases we have found the worst combination of H_{sp} and T_{pp}.

- By comparing contour approach with long term analysis we have indicated what percentile we should adopt of the 30-minute extreme value distribution to match long term results.

- For the cases we considered, target percentile for obtaining 10^{-2} – response was varying from 0.88 to 0.97 with an average value of 0.94.

- If we artificially increase duration of peak event to 3 hours, target percentiles reduces to 0.75 – 0.80 about.

→ Short term variability is of somewhat less importance in GoM than in North Sea (as expected).
Background IV

(And it is clear why we need a percentile of $X_{3h} > 0.5$??)

1. 0.01 annual prob sphere
 $\beta = -\Phi(0.01/2920) = 4.5$
 $\Phi(4.5) = 0.9999966$

2. 100-year design point for response

3. 0.01 annual prob. contour for U_1 and U_2 combinations.

4. Projection of design point in U_1-U_2 plane

5. 0.01 annual prob. design sea state
Conclusions

Most important:

A too small amount of data of extreme weather conditions is the largest challenge!
Environmental contour method: An approximate method for obtaining characteristic response for design purposes

Sverre Haver
svha@statoil.com
Tel: +4748072026
www.statoil.com
Introduction to background got the environmental contour method I
Problem is transformed to u-space
(u-space consists of independent, standard Gaussian variables)
Background II

1. 0.01 annual prob. sphere
 \[\beta = -\Phi(0.01/2920) = 4.5 \]
 \[\Phi(4.5) = 0.9999966 \]

2. 100-year design point for response

3. 0.01-annual prob. contour for \(U_1 \) and \(U_2 \) combinations.

\[(h_s) \]
\[(x_{3h}) \]
Background III

3. 0.01- annual prob. contour for U_1 and U_2 combinations.

1. 0.01 annual prob sphere
 \[\beta = -\Phi(0.01/2920) = 4.5 \]
 \[\Phi(4.5) = 0.9999966 \]

2. 100-year design point for response

4. Projection of design point in U_1-U_2 plane