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INTRODUCTION
The nearshore propagation and transformation of wind-driven ocean waves is af-

fected by medium variations (refraction), nonlinear wave-wave interactions, and dissi-
pation. Understanding how these processes affect wave statistics, and thus wave-driven
dynamics, is important for coastal dynamics and nearshore transport processes. In the
present paper we will focus on the role of triad nonlinearity and dissipation on the
statistics of weakly dispersive waves in the very nearshore, from just outside the surf
zone to the beach, also known as the wave shoaling and surf zone.

Because of the lack of frequency dispersion in shallow water, an asymptotic clo-
sure such as the resonant interaction closure approximation (Hasselmann 1962), which
has been central to the development of operational wave models (see e.g. Tolman
1991; Komen et al. 1994), appears not possible in the nearshore. Numerous statisti-
cal models for shallow-water wave propagation have been developed, either based on
the so-called Zakharov kinetic integral (Eldeberky et al. 1996), Boussinesq-type am-
plitude equations (e.g. Herbers and Burton 1997) or amplitude evolution equations
including full dispersion in the linear terms and the coupling coefficient (Agnon and
Sheremet 1997; Eldeberky and Madsen 1999). Invariably these models apply a so-called
quasi-normal closure, a semantics borrowed from turbulence literature, with either full
discard of the fourth cumulant or a heuristic approximation (see e.g. Rasmussen 1998
for a review). Generally, these stochastic models either solve a coupled set of equations
for the spectrum and bi-spectrum (Herbers and Burton 1997; Eldeberky and Madsen
1999) or explicitly integrate the bispectral evolution equation – at the expense of ad-
ditional assumptions – to obtain a single transport equation for the energy spectrum
(e.g. Eldeberky et al. 1996).

The Quasi-Normal (QN) approximation is shown to be accurate up to Ursell num-
bers around 1.5 (e.g. Agnon and Sheremet 1997; Norheim et al. 1998). However,
in regions of stronger nonlinearity (and possibly strong dissipation), this approxima-
tion becomes inherently inaccurate, to the extent that predictions can exaggerate non-
Gaussian features in the wave field, and can include negative ‘energies’, (see e.g. Ogura
1962). Herbers et al. (2003) proposed a closure modification by adding a dissipation-
controlled relaxation term to the bi-spectral evolution equation, which improves the
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model-predicted nonlinear dynamics in regions of strong nonlinearity. In the present
work we extend this closure modification to include a dependency on nonlinearity and
analyze its effects on the nonlinear dynamics.

The objective in the present work is twofold. First we discuss the stochastic model-
ing framework, define the Quasi-Normal closure approximation, introduce a new closure
approximation by adding a relaxation term to replace the fourth-cumulant contribution
to the bispectrum equation, and illustrate the differences in the closure characteristics
through comparison of the stochastic model to Monte Carlo simulations. In the second
part we implement a dissipation model, and compare the resulting stochastic model
(including relaxation term) to a set of laboratory observations of waves over a beach.

A NON-ASYMPTOTIC, ONE-POINT CLOSURE APPROXIMATION
We consider the propagation of waves on the surface of an inviscid and incom-

pressible fluid, and adopt a conventional Cartesian description with the origin of the
reference frame at the undisturbed free surface of the fluid. We let z denote the ver-
tical, positive pointing upward, and x = (x, y) the horizontal dimensions. The waves
are assumed to propagate into the half plane of x ∈ R+ where we will refer to x as
the principal direction, and y as the lateral direction. The surface elevation ζ(x, t)
associated with the random (but stationary) wave field is represented by a Fourier sum
over frequency and (angular) directional components

ζ(x, t) =
∞∑

p1,q1=−∞

A1
1(x)√
V 1

1

exp [i(λ1y − ω1t)]. (1)

Here ω1 = ωp1 = p1∆ω, λ1 = λq1 = q1∆λ with ∆ω and ∆λ the discrete angular
frequency spacing; the numerical sub- and superscript on the wave variable A1

1 is short
for Aλ1ω1

; the V 1
1 is the principal component of the group speed vector, written as

V 1
1 =

dω1

dκ1
1

=
κ1

1

k1

dω1

dk1
. (2)

Here k1 is the wavenumber related to ω1 through the linear dispersion relation, and the
principal wavenumber component κ1

1 = sgn (ω1)
√
k2

1 − λ2
1; the sgn function is included

to ensure that the surface elevation associated with the forward-propagating wave field
is real. Since we consider the wave field statistically homogenous and stationary, the
numerical sub- and superscripts for frequency and lateral wavenumbers respectively
are identical everywhere so that, for readability, we will drop the superscripts from our
notation in the following. Note that the Fourier amplitudes A1, as defined in (1), can
be thought of as flux amplitudes, such that in a conservative wave field |A1| is constant.

The angular-spectrum decomposition implies a forward-scattering approximation
(see e.g. Janssen et al. 2008), which is a convenient (and realistic) framework for our
discussion of the dynamics of nearshore wind waves incident onto a dissipative beach.
A more generic, isotropic description of the evolution of wave correlators in arbitrary
depth is presented elsewhere (Smit and Janssen 2011).

From the nonlinear boundary value problem for surface gravity waves, and in the
absence of ambient currents, the wave field evolution over distances of O(ε−1) can be
described by (see e.g. Janssen et al. 2006; Janssen et al. 2008)[

d

dx
− iκ1 + ν1

]
A1 = i

∑
ω2,λ2

W(1−2),2A(1−2)A2 (3)



where W12 is the second-order interaction coefficient (see e.g. Janssen et al. 2006 for
details), and ν1 is a dissipation term to account for depth-induced wave breaking; the
details of the latter are given later, where we discuss the complete model implementa-
tion.

Although no explicit assumptions were introduced regarding the dispersivity of
the waves, the evolution equation (3) is a shallow-water model since the lack of a
cubic nonlinear term limits its use to areas where quadratic interactions approach
resonance and leading-order energy transfers are on relatively short length scales (say
O(10) wavelengths).

To estimate the statistics associated with the deterministic model (3), we can de-
velop evolution equations for the statistical moments (or cumulants) through ensemble
averaging (e.g. Janssen et al. 2008). Through the presence of the nonlinear term the
hierarchy of equations for the statistical moments is open (see e.g. Orszag 1970; Hol-
loway and Hendershott 1977; Lesieur 1997; Salmon 1998 and many others) and some
form of truncation, or closure, is needed. Here we consider a closure by approximat-
ing the fourth cumulant in terms of lower-order statistical moments (or discarding it).
The statistical model thus consists of coupled equations for the energy spectrum and
bispectrum, which can be written as[

d

dx
+ 2ν1

]
E1 = −2

∫∫
dω2dλ2W(1−2),2={C23} (4a)[

d

dx
− iΛ12 + ν12

]
C12 = 2iQ12 +K(4)

12 (4b)

where

E1 = lim
∆ω,∆λ→0

〈|A1|2〉
∆ω∆λ

, C12 = lim
∆ω,∆λ→0

〈A1A2(A(1+2))
∗〉

∆ω2∆λ2
. (5)

and where we defined Λ12 = κ1 + κ2 − κ(1+2), ν12 = ν1 + ν2 + ν(1+2), and Q12 =

E(1+2)

(
W(1+2)(−2)E2 +W(1+2)(−1)E1

)
−W12E1E2. The K(4)

12 (on the right of (4b)) rep-
resents the fourth-cumulant contributions to the bispectrum evolution, which will be
discussed later.

By not directly restricting the third cumulant in equation (4), the model retains its
principal nonlinearity, but without introducing the increased complexity (and dimen-
sionality) of higher-order cumulant evolution equations. This seems a sensible choice,
in particular since it is not clear that adding higher cumulants would actually improve
the statistical model. After all, our deterministic model includes only quadratic non-
linearity, whereas the evolution of cumulants higher than the third are affected also
by higher-order nonlinearities; thus, although adding cumulants beyond the third may
make the stochastic model a more complete representation of the statistics implied
by the underlying (incomplete) deterministic model, it would not necessarily improve
the representation of nonlinear statistics of natural wave fields. Moreover, we consider
nearshore wave propagation onto a dissipative beach, where the dynamics are strongly
affected by dissipation (dominated by depth-induced breaking), the details of which
are still poorly understood (see e.g. Kaihatu et al. 2007). In other words, given the
limitations of the deterministic model and our limited understanding of the effect of
other physical processes on the closure dynamics (in particular dissipation), the added



complexity of evolving higher-order cumulants would not necessarily improve the model
representation of nonlinear wave statistics.

Quasi-Normal (QN) approximation

A consistent Gaussian closure would imply that all cumulants beyond the second
vanish, so that the resulting wave statistics are indeed Gaussian. However, this would
thus result in a linear model in which the spectrum components decay solely due to the
presence of dissipation. In other words, such a closure would eradicate the system of
nonlinearity completely. Alternatively, to retain at least the principal nonlinearity in
the system, the Quasi-Normal (QN) closure approximation assumes that all cumulants

higher than the third are zero, which implies that K(4)
12 = 0, but without directly

constraining the third-cumulant (or bispectrum).

In our case, setting K(4)
12 = 0 and combining the set (4) (by integrating (4b) and

substituting into (4a)) results in[
d

dx
+ 2ν1

]
E1 = −4

∑
ω2,λ2

W(1−2)2<{
∫ x

0
HQN

(1−2)2(x, x′)Q(1−2)2(x′) dx′} (6)

where

HQN
12 (x, x′) = exp

[∫ x

x′
(iΛ12(s)− ν12(s)) ds

]
(7)

The integral on the right of equation (6) can be thought of as a memory integral, where
H takes on the role of an influence function, which determines how much, and in which
way, the past states of the fourth moment affect the future state of the system1. In
the limit of weak dispersion (where Λ12 → 0), the memory of the system in the QN
approximation is principally constraint only by dissipation.

A principal (and known) shortcoming of the QN approximation is the lack of de-
correlation of the three-wave correlations as would be associated with the background
nonlinear random wave field. After all, by discarding the fourth-cumulant, the evolution
of the three-wave correlations is effectively decoupled from higher-order correlations in
the random wave field. In other words, from the viewpoint of the stochastic model, the
evolution of the spectrum and bispectrum depend only on dispersion, dissipation and
their mutual coupling (nonlinearity), but not on the presence of higher-order correla-
tions. In practice this will result in three-wave correlations that are too strong (by lack
of nonlinear de-correlation, see e.g. Orszag 1970; Holloway and Hendershott 1977), and
initial tendencies in the system that are retained too long. In areas of strong nonlinear-
ity these characteristics can result in unrealistic physics, including energies becoming
negative in the energetic ranges of the spectrum.

Quasi-Normal Relaxation (QNR) approximation

To improve the closure characteristics of the QN approximation in the context of a
one-point closure approximation, we model the fourth-cumulant contribution as a linear
damping term of the form (see e.g Holloway and Hendershott 1977; Herbers et al. 2003)

K(4)
12 = −µ12C12, (8)

1Although our model equations evolve (stationary) statistics through space, we will refer to past
and future to indicate regions of the domain where the wave statistics are determined (known) and
where it is yet to be determined.



where the µ12 can be thought of as a relaxation coefficient, which acts as a damping
term on the three-wave correlations and thus allows the system to return to a near-
Gaussian state in the presence of strong nonlinearity. Substituting (8) in equation (4b)
results in the influence function (7) being redefined as

HQNR
12 (x, x′) = exp

[∫ x

x′
(iΛ12(s)− ν12(s)− µ12(s)) ds

]
(9)

In our one-point closure approximation (we do not explicitly consider spatial cross-
correlations of the wave field), there appears no possibility to estimate µ12 from first
principles. Therefore, to close the model we simplify µ12 by treating it as a (real and
positive) damping term that depends on the strength of the changes in energy across
the triad due to nonlinearity and dissipation, so that

µ12(x) = β
|DS1 +DS2 +DS(1+2)|+ |NL1 +NL2 +NL(1+2)|

E1 + E2 + E(1+2)
(10)

where β is a tunable constant (anticipated to be O(1)) and

NLi = −4
∑
ω2,λ2

W(1−2)2<{
∫ x

0
HQNR

(1−2)2(x, x′)Q(1−2)2(x′) dx′} (11)

DSi = 2νiEi. (12)

The relaxation term proposed here provides a simple (and quasi-empirical) means to
recover some of the principal effects of the presence of the random wave background on
the evolution of the three-wave correlations (bispectrum). Whereas it does not capture
the effects of the fourth-cumulant in detail, it provides a de-correlation mechanism that
mimics the damping effects associated with the built-up of higher-order correlations,
which is important in regions of strong nonlinearity.

Closure characteristics

To illustrate the behavior of the QN and QNR model, in the absence of dissipation,
we compare Monte-Carlo simulations (using the deterministic model (3)) to the evolu-
tion predicted by the QN model (eqs (6) with (7)) and QNR model (eqs (6) with (9)).
The objective here is to illustrate the differences in these closure approximations, and
to identify the principal effects of the relaxation term on the evolution of the statistics.
In our simulations, the models are initiated at x = 0 with a (double-sided) frequency
spectrum of the form

E(ω, x = 0) = V (ω)
H2

rms

16σ
√

2π
exp

[
−(ω − ωp)2

2σ2

]
(13)

where Hrms is the root-mean-square wave height, V (ω) = ∂kω, and σ = 0.06 rad/s. The
spectrum is discretized in 64 equidistant frequencies with ∆ω = 0.05π rad/s, and the
integration is performed using a fixed-step-size Runge-Kutta scheme (∆x = 0.25 m).
The peak frequency of the wave field is ωp = 0.2π rad/s. Comparison of spectra after 10
wavelengths (x/L0 = 10) and 25 wavelengths (x/L0 = 25) shows that the spectra from
the Monte-Carlo simulations are generally smoother than the more spiky spectra from
the QN model (figure 1). Further, the QN model spectra become negative at several
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FIG. 1. Comparison frequency spectra from Monte-Carlo simulations (black solid line), QN
model (left panels, blue circle markers), and QNR model (right panel, red square markers)
at x/L0 = 10 (top panels) and x/L0 = 25 (bottom panels). The initial spectrum at x = 0
is indicated by the dashed line.

places in the frequency range (including the energy-carrying range), which are shown
as gaps because of the logarithmic scale. The QNR-simulated spectra are generally in
much better agreement with the Monte-Carlo simulations, in particular in the energy-
carrying range of the spectrum. However, the added relaxation in the QNR model does
result in some overestimation of energy levels in the spectral tail (figure 1).

Energy transfers near the (initial) peak (ω = ωp) and its first harmonic (ω = 2ωp)
are strongly exaggerated by the QN model (figure 2). The QNR closure approximation
results in much more realistic energy transfers by allowing the damping of three-wave
correlations. In the absence of dissipation, and without nonlinear-induced relaxation,
the QN approximation cannot effectively reduce the strength of three-wave correlations
present in the wave system; this results in the continuous back-and-forth transfer of
energy across triads, which is not seen in the Monte-Carlo simulation (see figure 2).

A STATISTICAL MODEL FOR SHALLOW-WATER WAVE EVOLUTION
The nearshore characteristics of the closure approximation is strongly dependent

on the dissipation characteristics. Thus to complete our nearshore wave model based
on the QNR closure approximation (equations (6) and (9)), we adopt a quadratic
weighting of the dissipation (Chen et al. 1997; Kaihatu et al. 2007; Pak 2011) and
write the dissipation term in (6) as

ν1 = ω2 ε

2m2
(14)

Here ε is the total (frequency-integrated) rate of wave dissipation associated with depth-
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FIG. 2. Left panels: comparison normalized energy at peak frequency (top panels) and
first harmonic (bottom panels). Right panels show the nonlinear energy transfer (Snl) at
the peak frequency (top) and first harmonic (bottom). Shown are Monte Carlo predictions
(black solid line without markers), QN approximation (blue line with circle markers), and
QNR approximation (red line with square markers).

induced breaking, estimated using the expressions in Janssen and Battjes (2007), and
m2 =

∫
ω2E dω.

One-dimensional wave propagation: laboratory observations

We will compare our model to observations made by Boers (1996) who conducted
experiments in a 40-m-long, 0.8-m-wide wave flume. The flume was equipped with
a hydraulically driven, piston-type wave generator. The bottom profile used in the
experiments mimics a barred sandy beach (see figure 3), with the origin of the x-axis at
the beginning of the slope, and the dots at SWL (in figure 3) indicating the 70 locations
where wave observations are available.

We consider a case with moderately steep incident waves (incident wave Hs = 10 cm,
Tp = 3.33 s; referred to as case 1C in Boers 1996). The model is initiated with the
observations at x = 0, we set the breaker index to γ = 0.85 (based on some trial runs
to calibrate dissipation for wave heights), and the relaxation constant is set to β = 1.8
(estimated from a regression analysis of the observed relaxation characteristics, see Pak
2011). The nonlinear dynamics are not sensitive to variations in γ (which controls the
bulk dissipation rate) but are affected by variations in frequency weighting of dissipation
(quadratic) and the strength of relaxation controlled by β. The model-predicted spectra
at x = 20 m and x = 25 m are in very good agreement overall with what is observed (see
figure 4), including the slope of the tail. Although the simulated spectra do not resolve
all the details in the observed spectral shape (the modeled spectra are more smooth),
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FIG. 3. Beach profile Boers 1996, positive x-direction from left to right. Circles at SWL
and x-axis ticks indicate wave gauge positions.
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FIG. 4. Observed (circles) and predicted (thick dashed line) spectra at x = 20 m (left
panel) and x = 25 m (right panel). The thin dashed line represents the observed spectrum
at x = 0 m.

the over-prediction of energy in the spectral tail (which we saw in the comparison to
conservative Monte Carlo simulations) is not observed.

The observed (from bispectral analysis) and modeled space-frequency structure of
nonlinear energy transfers in good agreement overall (figure 5). However, some dif-
ferences remain at higher frequencies (1 Hz < f < 1.5 Hz) over the breaker bar (near
x ≈ 20 m) and on the slope shoreward of the trough (x ≈ 24 m), where energy transfers
are somewhat underestimated by the model. The bulk third-order statistics (skew-
ness and asymmetry) are in good agreement with what is observed, although skewness
values are slightly underestimated everywhere (figure 6).

CONCLUSIONS
We have presented a new, quasi-empirical closure approximation for the nonlinear

evolution of wave statistics in shoaling gravity waves. The addition of a relaxation
term to de-correlate triads in regions of strong nonlinearity, results in a more realistic
representation of the nonlinear dynamics in shoaling gravity waves. Comparison to
laboratory observations suggests that the model accurately captures the principal non-
linear dynamics in the surf zone, although nonlinear transfers to harmonic frequencies
remain somewhat underestimated in regions of intense dissipation.
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FIG. 5. Comparison of observed (top panel) and modeled (bottom panel) nonlinear energy
transfers across the beach.
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