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Abstract

We present a variational method for the coherent space-time reconstruction of oceanic sea

states from stereo video data. This remote sensing observational method yields accurate esti-

mates of the spatio-temporal dynamics of ocean waves. The main idea is to pose the stereoscopic

reconstruction problem in a variational optimization framework and design an energy functional

whose minimizer is our desired temporal sequence of wave heights. Our functional combines

photometric observations as well as spatial and temporal smoothness priors. A nested iterative

scheme is devised to numerically solve via 3-D multigrid methods the system of partial di�eren-

tial equations resulting from the optimality condition of the energy functional. The output of

our method is the coherent, simultaneous estimation of the wave surface height and radiance at

multiple snapshots. We demonstrate our algorithm on real data collected o�-shore. Statistical

and spectral analysis are performed. Comparison with respect to an existing sequential method

is analyzed.

1 Introduction

The study of the dynamics of oceanographic phenomena using vision systems has a long tradition that
dates back to the �rst half of the previous century ([13, 14, 8], etc.). This topic has gained popularity
in recent years due to the economical and practical bene�ts of these systems [12, 2, 16, 10, 4, 9].

In this paper, we build upon the graph variational method presented in [5, 6] for the stereoscopic
reconstruction of oceanic sea states. The variational method for still images was extended to process
stereo video on a sequential, snapshot-by-snapshot basis. Besides this, the variational framework also
allows for more ways to incorporate temporal coherence on the reconstructed surface. The ultimate
goal of such an observational technique is to include the spatial and temporal physics of the waves
in the reconstruction step [7]. Because ocean waves are governed by the wave equation, it would
be desirable to include such law in the estimation process. This is however, a challenging problem.
Before considering this approach, a natural way to enforce temporal coherence of the reconstructed
wave height, besides the purely sequential processing above mentioned, is to include a temporal
regularizer in our energy model and solve the resulting variational problem. This is the object of
this work and it implies a simultaneous estimation of the unknowns (wave height, radiance, etc.) for
all snapshots in a sequence. The resulting reconstruction is called a manifold reconstruction (MR)
because the developed method estimates a manifold of graphs (wave heights or elevation maps).

2 Theoretical model

In a multi-camera setup recording synchronized videos of the ocean surface, let the video signal
acquired by the i-th camera be denoted by Ii(xi, τ), where xi = (x, y)> and τ denote the (continuous)
spatial and temporal variables, respectively. In reality, a digital video signal only speci�es the
intensity values at discrete locations of the space-time axes (pixels and time instants), however, it is
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more bene�cial to model the problem in the continuum. Following the physical model of the scene
presented in [5], consider the surface shape (wave height) and surface radiance as functions of space
and time, i.e., as 3-D functions: Z(u, v, τ) and f(u, v, τ), with u = (u, v) ∈ U and τ ∈ [0, T ]. Recall
that the surface radiance is a function that lives on top of the surface and represents the �color� of
the wave that is seen from the viewpoints of the cameras. Let us denote the domain of Z and f by
UT = U × [0, T ]. Let the symbol ∇Z denote the gradient of Z with respect to all variables, not only
the spatial ones (u, v), i.e.

∇Z = (Zu, Zv, Zτ )
>,

and similarly for ∇f . With this notation, the three variables u, v and τ are treated uniformly.
Next, we de�ne an energy functional to measure the goodness of �t of candidate space-time

functions Z and f to the observed data (i.e., the stereo videos):

E(Z, f) = Edata(Z, f) + αEgeom(Z) + βErad(f), (2.1)

with weights α, β ∈ R+. Let the data �delity term, which measures the photo-consistency throughout
the video for a candidate wave height function, be

Edata =

Nc∑
i=1

Ei,

with

Ei
.
=

ˆ T

0

ˆ
Ωi

φi dΩidτ

and photometric criterion

φi =
1
2

(
Ii(xi, τ)− f(xi, τ)

)2
. (2.2)

The de�nition of the data �delity term as an integral over the image domain Ωi (rather than over
U) has two advantages: the data term is independent of the choice of domain for the graph and the
resulting optimality conditions for the minimization of (2.1) lack image derivatives. This desirable
property is inherited from the modeling and mathematical principles that we follow from [11]. The
resulting method is less sensitive to image noise than other variational approaches for stereo 3-D
reconstruction.

Also, let the spatio-temporal regularizers on the smoothness of the surface shape and radiance
be:

Egeom =

ˆ
UT

1
2‖∇Z‖2 duT , (2.3)

Erad =

ˆ
UT

1
2‖∇f‖2 duT . (2.4)

where duT = dudτ . The new terms with respect to the still-image case [5], Z2
τ and f2

τ , are the
source of temporal coherence in the model.

The radiance function is an auxiliary variable with a twofold purpose: it simpli�es pairwise image-
to-image comparisons with fewer image-to-model comparisons and it also extends the in�uence of
the point-wise photometric criterion by means of neighborhood e�ects due to the regularizer Erad.
The latter endows the energy functional with a global in�ucence and improves the robustness of the
energy functional against image noise.

The data �delity term corresponding to the i-th camera can also be expressed as

Ei =

ˆ
UT

φiJi duT ,

where the Jacobian Ji (the geometric conversion factor between integrals) has the same expression
as in the still-image case despite the fact that now the Jacobian is also a function of time τ (since
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Ji depends on the surface shape, which is a function of time). Therefore, the energy (2.1) can
be expressed in the common and �xed domain of integration UT as the integrand of the so-called
Lagrangian L(Z,∇Z, f,∇f, u, v, τ):

E =

ˆ
UT

LduT .

To minimize the proposed energy, let us compute the necessary optimality condition, which
follows from the �rst variation (directional derivative) of the energy with respect to the unknowns:

D(h,w)E(Z, f) =
d

dε
E(Z + εh, f + εw)

∣∣∣∣
ε=0

.

Setting to zero the directional derivative for all admissible perturbations (h,w) we arrive at a
coupled system of partial di�erential equations (PDE), the so-called Euler-Lagrange (EL) equations:

LZ − (LZu)u − (LZv )v − (LZτ )τ = 0 in UT ,

LZuν
u + LZvν

v + LZτ ν
τ = 0 on ∂UT ,

Lf − (Lfu)u − (Lfv )v − (Lfτ )τ = 0 in UT ,

Lfuν
u + Lfvν

v + Lfτ ν
τ = 0 on ∂UT .

After calculations, similar expressions to those of the still-image optimality conditions are derived.
That is why this approach is considered a natural extension of the aforementioned still-image case.
Now, however, variables Z, f , and consequently Ji and Ii depend on the new temporal variable τ :

g(Z, f)− α∆Z = 0 in UT , (2.5)

b(Z, f) + α
∂Z

∂ν
= 0 on ∂UT , (2.6)

−
Nc∑
i=1

(Ii − f)Ji(Z)− β∆f = 0 in UT , (2.7)

β
∂f

∂ν
= 0 on ∂UT , (2.8)

where the non-linear terms due to the data �delity energy have the same expression as those of the
still-image energy since the data �delity energy does not depend on the new derivatives Zτ , fτ :

g(Z, f) = ∇uf ·
Nc∑
i=1

|Mi|Z̃−3
i (Ii − f)(u− C1

i , v − C2
i ), (2.9)

b(Z, f) =

Nc∑
i=1

φi|Mi|Z̃−3
i

(
(u− C1

i )ν
u + (v − C2

i )ν
v
)
.

Recall that, for the i-th camera, Ci = (C1
i , C

2
i , C

3
i )

> is the optical center, |Mi| is the product of
the focal lengths and Z̃i is the depth of the surface point with respect to the camera. The 3-
D Laplacians ∆Z = Zuu + Zvv + Zττ and, similarly, ∆f arise from the regularizing terms (2.3)
and (2.4), respectively. ∂ ∗ /∂ν = (∇∗) · ν is the usual notation for the directional derivative along
ν = (νu, νv, ντ )>, the normal to the integration domain UT in the parameter space. ∇uf is the
gradient of f with respect to the original spatial variables only. To simplify the model, we replace
(2.6) by homogeneous Neumann boundary conditions, as in the still-image case.

Having introduced the manifold reconstruction model, let us make it more �exible by including
an extra parameter ρ2 ≥ 0 to control the amount of temporal regularization of the solution relative
to the amount of spatial regularization. The e�ect of this parameter is the substitution of the 3-D
Laplacian ∆Z = Zuu + Zvv + Zττ by the weighted sum Zuu + Zvv + ρ2Zττ , and similarly for ∆f .
There are two possible interpretations to this anisotropic di�usion operator. The simplest one is that
the operator arises by replacing the integrand in (2.3) by 1

2 (Z
2
u +Z2

v + ρ2Z2
τ ), thus using a weighted
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norm instead of the Euclidean norm (and similarly for (2.4)). The second interpretation is that the
anisotropic di�usion operator arises by using the Euclidean norm (2.3) in a deformed space where
variable τ is scaled by ρ with respect to variables (u, v) to yield the desired non-uniform scaling of
the gradients and the Laplacians, ∇Z,∇f,∆Z and ∆f .

3 Numerical solution

An iterative method is used to �nd the minimum of energy (2.1) via the solution of the coupled
system of equations that arise from the the necessary optimality condition of the energy. Observe
that, for a �xed height, equation (2.7) is a linear PDE in the radiance, which is easier to solve than
the non-linear PDE in the height (2.5) for a �xed radiance. By exploiting this asymmetry one may
devise a minimization strategy consisting of a nested iterative scheme: an outer loop performing
a gradient descent in the height, and an inner loop implementing a direct optimization for the
radiance. The scheme is initialized by an approximate solution, usually consisting of the zero height
function and the corresponding optimal radiance without regularizer (β = 0). The linear PDE in the
radiance is faster to solve using classical stationary iteration methods such as Jacobi or Gauss-Seidel
rather than setting up a gradient descent equation and using time-stepping1 solvers. The PDE in
the height is more complicated and it is solved via time-stepping methods.

Numerical discretization of the PDEs is carried out using Finite Di�erence Methods (FDM).
Therefore, the integration domain UT is discretized by means of a 3-D grid. Forward di�erences
in �ctitious time and central di�erences in (u, v, τ) approximate the derivatives in the PDEs. The
quantity ρ̃ = ρ h/∆τ can be interpreted as the step ratio that states the relationship between the
grid steps h = ∆u = ∆v and ∆τ in the anisotropic space previously mentioned.

Both updating schemes (stationary method for f and time-stepping method for Z) are used
as relaxation procedures inside a 3-D multigrid method [3, 15] that approximately solves the EL
equations. Multigrid methods are the most e�cient numerical tools for solving elliptic boundary
value problems. Each relaxation iteration implies the update of the values of the approximate
solution (either Z or f) at all the grid points, that is, all physical time slices of the 3-D grid are
updated in the same iteration. This simultaneous processing property is the main di�erence with
respect to the sequential scheme [5].

Due to the extra dimension added to the problem, memory becomes a precious resource. Storage
is required not only for the unknowns Z and f at the di�erent levels of multigrid, but also for the
coe�cients of the linear/linearized PDEs and other temporary variables. In-place updates of the
unknowns are preferred because they allow longer sequences of images to be processed for the same
amount of memory.

Full Multigrid [3] with zero initial condition is used to initialize the 3-D multigrid solver. It is
also possible to initialize it with the solution from a fast sequential 2-D multigrid, possibly computed
using a coarser version of the problem.

Comparison to sequential 2-D multigrid

Although the sequential and manifold reconstruction methods (SR and MR, respectively) share
a common base theoretical modeling, their major di�erence is that SR relies on 2-D multigrid
(snapshot-wise), whereas MR is based on 3-D multigrid. A comparison of the speed performance
between both methods is not the focus of this work, but we discuss this topic of practical relevance.
In general, we may conclude in a �rst analysis that SR is simpler and faster but more sensitive to
noise than MR.

The two main components of any multigrid method are the integrid transfer operators and the
smoothers to update the approximate solution. Let us compare both qualitatively for SR and MR.
On the one hand, 3-D restriction is faster than sequential 2-D restriction because each coarser level
of 3-D multigrid has roughly half the number of snapshots of the previous level, whereas in sequential
2-D multigrid the number of snapshots remains constant and maximal for all levels. On the other

1arti�cial time, not the physical time τ .
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hand, assuming full weighting restriction, each point in the coarse grid requires a weighted sum of 9
points in case of 2-D restriction and 27 points in case of 3-D restriction. Thus, each point-wise 3-D
restriction involves more neighbors and calculations than each 2-D restriction. Similar comments
apply to the prolongation operators: trilinear interpolation is applied to a smaller number of grid
points than sequential bilinear interpolation, but the former is more expensive point-wise. For details
on 2-D and 3-D inter-grid transfer operators, see [15].

The update of each grid point in MR is slower than the update of each point in SR because
the former depends on more neighbors (temporal derivatives and 3-D Laplacian). In addition, SR
only performs full multigrid for the reconstruction of the �rst snapshot (and forward propagation
of the solution to initialize the remaining snapshots), whereas MR carries out full multigrid for all
snapshots. Moreover, the arti�cial time step to evolve the non-linear gradient descent PDE in the
height is smaller in MR than in SR because the former takes the minimum step over all snapshot-wise
steps of the latter. Hence, MR requires more iterations than SR to reach the same �nal, arti�cial
time. On the other hand, MR is more robust than SR because it is less prone to be trapped in a local
minimum caused by the poor reconstruction of a snapshot. Errors are distributed better among all
snapshots in MR than in SR.

4 Experiments

Our variational method has been tested on stereo video acquired at an o�-shore platform near the
southern seashore of the Crimean peninsula, in the Black Sea. Two cameras mounted 12 m above
the mean sea level and 2.5 m apart provide images of 1624 × 1236 pixels, acquired at a frame rate
of 10 Hz.

Current implementation of the MR method requires all relevant information (input images, pro-
cessing grids, etc.) to be stored in the computer's main memory (RAM). Thus, the limit in the
amount of available main memory in the computer performing the reconstruction imposes a con-
straint on the size of the achievable reconstruction. For a �xed amount of memory, there is a trade-o�
between the spatial and temporal sizes of the grid within the MR method: one can either reconstruct
a few snapshots with high spatial resolution or a larger number of snapshots at a coarser spatial
resolution.

For example, in a computer with 2 GBytes of RAM, a 6-level multigrid solver can roughly handle
a reconstruction on a spatial grid of 513× 513 points (resolution h = 2.5 cm) on 65 snapshots of the
original dataset or a reconstruction on a grid of 129 × 129 points (h = 10 cm) on 1025 snapshots
of a ×4 coarser version of the images. Fig. 4.1 shows an example of the reconstructions obtained
at both spatial resolutions previously mentioned. This �gure shows that the reconstruction at the
low resolution captures the gist (i.e., low spatial frequency components) of the wave heights, thus
resembling the reconstruction at the high spatial resolution.

The MR algorithm acts on the entire sequence of images by reconstructing pieces (sub-sequences)
of consecutive snapshots. Other coarse-to-�ne strategies are also possible to ensure a smooth tran-
sition near the temporal boundaries of the sub-sequences.

Snapshots can also be decimated in time. The linear dispersion relation that relates spatial
and temporal frequencies of waves in deep water, k = ω2/g (where k = 2π/λ is the wave number,
ω = 2πf is the angular frequency and g is the gravity acceleration), serves as a physical criterion
to choose a reasonable frame rate for a given spatial resolution, and vice versa. For instance, in
the example with grid resolution h = 10 cm, assuming the minimum spatial wavenumber that the
algorithm reconstructs reliably is λ = 4h, the corresponding frequency of the wave is

f =
ω

2π
=

1

2π

√
g
2π

λ
=

√
g

2π 4h
≈ 2 Hz.

If this is the maximum temporal frequency that the algorithm reconstructs reliably, the correspond-
ing Nyquist rate (minimum sampling rate required to avoid aliasing) is twice as much, 4 Hz, meaning
that snapshots should be at most ∆τ ≤ 1/4 = 0.25 seconds apart. In the experiments, we used
a smaller resolution ∆τ = 0.1 s since the acquisition rate (10 Hz) allowed so, but we could have
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Figure 4.1: Right: reconstruction of a snapshot at spatial resolutions h = 2.5 cm (top) and h = 10
cm (bottom). Wave height is pseudo-colored, from blue (low) to red (high). Left: one of the two
input images at the corresponding resolution (top: 1624 × 1236 pixels, bottom: 406 × 309 pixels),
with highlighted reconstructed region of interest.

used ∆τ = 0.2 s (i.e., temporal snapshot decimation by a factor of 2) to achieve results with similar
validity and interpretation, albeit expanding twice the physical time interval.

4.1 Comparison to the sequential reconstruction method

Experiments were carried out using MR for a sequence of 4100 consecutive snapshots, split in sub-
sequences of 1025 snapshots. A 6-level full multigrid method with 1000 iterations per level and 1500
iterations at the �nest level was performed, with 2 V-cycles per iteration and one pre- and post-
relaxation sweeps per level. The weights α = 0.1 and β = 0.025 were empirically determined. The
initial manifold surface consisted of the zero height surface (for all snapshots). Di�erent values of
the parameter ρ were tested: ρ̃ = ρh/∆τ = {0.1, 0.2, 0.5, 1}. Observe that the temporal coherence of
the MR decreases as ρ → 0. In the limit, ρ = 0 is equivalent to the reconstruction of each snapshot
independently, using full multigrid on each of them, but with a common arti�cial time step.

Figs. 4.2 through 4.4 show slices of the surface height and radiance functions obtained by the MR
method. The computational grid has 129× 129× 1025 points, with spatial and temporal resolutions
h = 10 and ∆τ = 0.1 s, respectively. In particular, the results correspond to the case ρ̃ = 0.1.
Observe the oscillating patterns of the ocean waves in both the height and radiance functions of the
u and v slices (Figs. 4.2 and 4.3). The radiance function also captures the location and motion of
sea foam caused by breaking waves. Fig 4.4 gives the reconstructed surface height and radiance for
a particular snapshot of the sequence.
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Figure 4.2: A slice at constant u = u0. Top: surface height Z(u0, v, τ) (grayscale encoded, from
dark (low) to white (high)). Bottom: surface radiance f(u0, v, τ). Horizontal axis is time τ .

Figure 4.3: A slice at constant v = v0. Top: surface height Z(u, v0, τ) (grayscale encoded, from dark
(low) to white (high)). Bottom: surface radiance f(u, v0, τ). Horizontal axis is time τ .

By visual inspection of the reconstruction (see Fig. 4.5), one concludes that the values ρ̃ = {0.5, 1}
are too large: temporal derivatives are penalized too much with respect to spatial derivatives, yielding
a reconstructed surface shape that is very smooth in time and does not capture the wave patterns
present in the stereo video data. Drawing an analogy with linear signal processing, the anisotropic
di�usion carried out by the (weighted) Laplacian operator has a low-pass �ltering e�ect: it limits
the temporal bandwidth of the output signal, thus reducing noise but also destroying the desired
wave signal.

Using the following formulas to measure the photometric quality of the modeled image given by
the reconstructed surface at a single snapshot,

Ẽdata =
Edata

N
≈ h2

N

Nc∑
i=1

N∑
j=1

φi(uj)Ji(uj), (4.1)

RMS

[
Ei

Area(Ωi)

]
≈

(
Ẽdata

2

N

Area(Ωi)

) 1
2

=

(
N

2rArea(Ii)

) 1
2
√
Ẽdata, (4.2)

it is possible to measure the photometric quality of the modeled images given by the reconstructed
space-time surface, i.e. for all snapshots. Table 1 compares the photometric error of the reconstructed
sequence of wave heights obtained by means of the SR and MR methods with di�erent values of the
parameter ρ. Observe that the magnitude of the photometric error is small and very similar for all
values of ρ, however the di�erences in reconstructed surface shape are more noticeable by means of
other methods such as the statistics of the wave heights.
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Figure 4.4: A slice at constant τ = τ0. Size: 129 × 129 grid points. Left: surface height Z(u, v, τ0)
(grayscale encoded, from dark (low) to white (high)). Right: surface radiance f(u, v, τ0).

Figure 4.5: Manifold reconstruction at one of the snapshots. Left: a coarse input image of the
stereo pair. Center: reconstructed wave height with ρ̃ = 0.1. Right: reconstructed wave height with
ρ̃ = 1.0.

Method mean standard deviation

Sequential 3.613 0.398
Manifold, ρ̃ = 0.1 3.615 0.393
Manifold, ρ̃ = 0.2 3.621 0.391
Manifold, ρ̃ = 0.5 3.657 0.392

Table 1: Comparison of photometric error (4.2) for several methods used to reconstruct the same
coarse stereo image sequence: the variational graph sequential method (SR) [5] and the variational
graph manifold method (MR).

The spectral and statistical analysis carried out in [5] can be repeated for the manifold method
to validate the resulting reconstruction (see Figure 4.6). No signi�cant di�erences with respect to
the SR method are reported except for the fact that the MR method shows an improvement in the
estimation of the crest-trough asymmetry of wave heights (see Fig. 4.7).

5 Conclusion and future work

A variational graph manifold method for the space-time coherent reconstruction of ocean waves has
been discussed and developed. Due to the convenient representation of the ocean surface as a height
function, the incorporation of a temporal dimension is straightforward. This bene�t of the graph
representation makes the reconstruction problem signi�cantly simpler than what it would be if the
level set framework was used instead. The manifold method has been tested on stereo video data
from real ocean waves at an o�-shore platform in the Black Sea. The qualitative and photometric
performance of the method has been demonstrated on a coarser version of the dataset due to memory
limitations of the implementation with respect to the size of the original dataset. By design, the
manifold reconstruction method is more robust than the sequential method, at the expense of speed.
In addition, it captures better some physical properties of wave heights than the sequential method,
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Figure 4.6: Left: Omni-directional wave number spectrum. Right: Normalized frequency spectrum
(σ² is the variance of the wave surface) averaged over several virtual probes in time (blue line) and
compared to the spectrum by the epipolar method [2].

such as the crest-trough asymmetry of wave heights.
Evidence shows that the incorporation of the physics and coherence in our variational method

produces tangible improvements and encourages us to continue with this line of research to achieve
better results. These insights justify the research on the incorporation of the wave equation in the
reconstruction process. Finally, the manifold view developed in this paper can also be applied to
the variational disparity method in [1]. This topic may be further investigated in the future.
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