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1 Introduction

Many o�shore operations require windows of relatively calm weather. One

example is the transportation of an oil rig between two locations over a

period of, say, 24 or 48 hours. In order to make the necessary preparations

the crew needs to know at least three days in advance when a calm weather

window is to be expected. The optimal scenario is to have absolutely calm

weather, e.g. waves with signi�cant wave heights lower than, say, 1 meter

over a 24 hour window. If an unpredicted worsening of the weather arises,

let's say the signi�cant wave height rising to 2 meters for some hours, the

operation can continue with some di�culties. But with signi�cant wave

height larger than 3 metres, even for only a few hours, the operation will fail

and big economic losses can be expected. Other examples of operations that

require calm weather windows include the maneuvering of ships and platform

maintenance.

In this article we will study the utility of wave forecasts of relatively calm

weather windows with the requirements of o�shore operations in mind. Given

a deterministic (high resolution) and an ensemble forecast (probabilistic fore-

cast), a user will have to make the decision of when to start the operation or
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if it is necessary to cancel it based on the predictions available. Is the prob-

abilistic forecast better than the deterministic one, or are there cases when

the deterministic forecast performs just as well? For the probabilistic fore-

cast, are decisions best based on the ensemble mean or on some probability

threshold?

In order to answer these questions ten years of wave forecast veri�ca-

tion combined with �nancial information are used as input to the cost lost

model traditionally used in the analysis of weather forecasts (Richardson,

2000; Wilks, 2006; Thornes and Stephenson, 2001; Roulston and Ellepola J,

2005). The cost-loss model has been used in the analysis of extreme weather

validation, but here we will apply it to forecasts of relative calm weather

windows. We perform this exercise by simulating that decisions must be

taken concerning operations in an area around the Conocco-Phillips Eko�sk

oil �eld located in the North Sea (Figure 1).

The forecast veri�cation is framed in a contingency table which is con-

structed by using in-situ observations of signi�cant wave height (Hs) and

outputs from both the ensemble prediction system (EPS) and the determin-

istic run from the European Centre for Medium-Range Weather Forecasts

(ECMWF).

The forecast skill is evaluated in a statistical sense, and the larger the

sample size the more trustworthy the veri�cation results become. In this

case the total number of collocated data, i.e. when observations and model

predictions both exist, were n = 30, 332. With such a large sample size one

may hope that the analysis of calm weather windows may be statistically

more robust in comparison with the veri�cation of extreme events.

2 Data

Ten years of signi�cant wave height data from observations and model, from

the January 1999 to December 2009, are used. The observations come from
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locations near the Eko�sk oil platform (Figure 1). The idea was to select

the maximum number of observations that describe the same wave climate.

Time series from the ECMWF wave prediction system (deterministic and

ensemble) were interpolated onto the observation positions.

Observations

Wave observations from 27 locations in the North Sea were used. The data

are part of the information broadcast to meteorological o�ces via the Global

Telecommunication System (GTS). Most of them are from �xed platforms

operating in the North Sea, however very little information on the type of

wave sensor is available in the GTS data record. Nevertheless, the wave

height data generally compare well with model analysis. From the data

records, time series are reconstructed to perform a basic quality check on the

data, Bidlot et al., 2002. Temporal scales are made uniform by averaging

the hourly observations in a window of 4 hrs centered around the veri�cation

time. In-situ observations exhibit a high-frequency variability on a time scale

of 1 hr.

Not averaging the data will result in a scatter between the models and

observations, which can be linked to high frequency variability, not present

in the model, Janssen et al., 1997. For a more detailed description of the

data treatment, see Bidlot et al., 2002 and Saetra and Bidlot, 2004.

Model predictions

An overview of the operational ensemble prediction system (EPS) at ECMWF

is given in Leutbecher and Palmer, 2008 and Buizza, 1997. For these ten

years, the ensemble system has been running with 51 members, the control

run which starts from an unperturbed initial conditions (the analysis after

the assimilation step) and 50 from perturbed initial conditions. The EPS

is thus based on the notion that forecast uncertainty is dominated by er-
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rors in the initial conditions. Stochastic perturbations of the atmospheric

model tendencies are also applied throughout the perturbed forecast runs to

account for uncertainties in the model physics parametrisation. The deter-

ministic run is like the control run but with higher horizontal resolution. In

all model integration, the atmospheric model is coupled to the wave model

WAM (Janssen et al., 1997, G. Komen et al., 1994). The WAMmodel marked

the introduction of so-called third generation wave models which explicitly

accounts for the non-linear interaction between the wave components. For

simplicity all members start from the same initial wave conditions as pre-

scribed by the latest operational analysis. The divergence between the wave

ensemble members is therefore due only to di�erent wind forcing.

During 1999 to 2009 there have been several changes that are described

in details by Leutbecher and Palmer [2008]. For example, the horizontal

resolution of the wave ensemble changed from 1.5o to 1.0o on 20 November

2000. While the horizontal resolution of the deterministic run changed from

0.5o to 0.36o on 1 July 2000. The forecast were only available every 12

hours before 15 March 2005 and every 6 hours since then. The wave model

changed from being run just with deep water integration to both deep and

shallow water after November 2000. In this study, we will ignore the possible

non-uniformity of the forecast quality due to these changes.

3 Methods

The cost-loss model proposed by Richardson [2000] assess the economic value

of a forecast if both the monetary loss L (in, say, dollars) due to adverse

weather situations and the cost C of preventing weather damage are known

in monetary terms. For a given event the cost C is assumed to be less than

the loss L. The idea is to consider a hypothetical decision maker who must

choose to take action or do nothing. The decision is based on the forecast

available.
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Figure 1: The positions of buoys (red circles) and the Eko�sk oil �eld (black
trangle).
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First we take a benign weather event X0 de�ned by low signi�cant wave

height in a span of time. The obvious X0 is Hs ≤ 1m during an entire 24-

hr forecast window of [72 78 84 90 96] hours (the ECMWF �elds come at

six-hour intervals). However, the benign weather X0 we will present here is

Hs ≤ 3m for at least four of the �ve forecasts [72 78 84 90 96] hours (or

Hs ≤ 3m for at least two of the three forecasts [72 84 96] when only three

forecast are available).

When the benign weather event X0 is forecast as yes, the decision maker

choose to do nothing and carries on with the o�shore operation. If the event

is forecasted to occur (i.e. the waves stay below 3m) and it happens the

expenses will be zero dollars. If the event is forecasted to occur but does

not happen a loss L is incurred. Such loss L would be the expenses due

to damage of equipment or prolonging the operation in time. On the other

hand, if bad weather is forecasted, i.e. the benign weather is forecasted as no,

the decision maker will spend an amount of money C protecting, whether the

event occurs or not. Let's say that the protection action is postponing the

operation. C is then the expenses associated with the delay. This situation

is summarized as:

Forecast

benign weather event

Xo observed

yes no

yes 0 L no take action

no C C yes take action

(1)

In order to use the same formulation as Richardson in Jolli�e and Stephenson

[2003], we considerer instead the complementary bad weather eventX1, which

is: Hs > 3m for at least two of the forecast within the window [72 78 84 90
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96] . Then (1) instead becomes:

Forecast

bad weather event

X1 observed

yes no

yes C C yes take action

no L 0 no take action.

(2)

The relative economic value of a given forecasting system is de�ned as

V =
Ec − Ef

Ec − Ep

(3)

Here, Ec is the expenses expected when no forecast is available, Ef is the

expenses of the forecasting system considered and Ep is the expenses of a

hypothetical perfect forecasting system. There are two possible strategies

for determining Ec, based on the user knowledge of the area climatology,

either to protect all the time therefore no extra cost will be incurred or to

never protect and su�er the extra loss when the event happens.

The de�nition of V is a skill score of expected expenses with climatology

as reference. When V > 0 the decision maker will gain some economic bene�t

by using the forecast information. When V = 0 the system is as bad as the

climatology. The maximum value of V = 1 is reached when the system

perfectly predicts the future. To evaluate these expenses a contingency table

is used. This table gives the counts for each of the four possible combinations

of forecast and observed event:
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Forecast

X1 observed

yes no

yes a b

no c d

(4)

Here a indicates the number of times the event X1 was forecasted to occur

and did occur (hits); b is the number of times the event was forecast to

occur, but did not occur (false alarms); c is the number of times the event

was forecast not to occur but did occur (misses); and d is the number of times

the event was forecast not to occur and did not occur (correct rejections).

The expression for the expenses thus become:

Ec = min (C,L (a+c)
n

)

Ep = C (a+c)
n

Ef = a
n

C + b
n

C + c
n

L

(5)

where n = a + b + c + d is the total amount of collocated data. In this

case n = 30, 332. The saving S =Ec − Ef (Thornes and Stephenson [2001])

gives a direct measure of the amount of �nacial bene�t. These quantities are

calculated for the deterministic run, the mean of the ensemble and for the

entire ensemble at each probability threshold.

4 Results

When analysing the complementary event to Hs ≤ 1m during an entire 24-hr

forecast window, which is: Hs > 1m for at least one of the forecast [72 78

84 90 96] the reliability diagram presents a big underforecasting bias and a

post-processing calibration was needed it, see Roulston and Ellepola J [2005].

8



Here we analyse the event X1 : Hs > 3m for at least two of the forecast

within the window [72 78 84 90 96] . The economic value formulated in the

equation 3 is shown in Figure 2. For each probability a curve of economic

value is calculated. The ensemble economic value is obtained by taking the

envelope of all these curves at each C/L. The envelope curve, shown with the

label ENS in Figure 2a), is then the optimum maximum V of the ensemble

system. For the entire range of C/L (the cost-loss ratio) the economic value

V of the ensemble is larger than both the deterministic and the ensemble

mean. This study will focus in small values of C/L since they can be related

to the o�shore operations mentioned. It is important to notice that for a

range of 0.3 < C/L < 0.45 the V for ensemble, the ensemble mean and the

deterministic are very close. For C/L smaller than 0.05 only the ensemble

gives some economic bene�t.

A user with C/L of 0.1, 0.2, 0.3 and 0.4, will bene�t by postponing

the operation when the probabilities are equal or bigger than 0.12, 0.23,

0.32 and 0.39 respectively, see Figure 2b). At these probabilities V reaches

its maximum. In a perfectly reliable system the threshold probabilities are

exactly equal to C/L (Jolli�e and Stephenson [2003]). This is almost true in

this case due to the fact that the system is quite reliable at these probabilities.

A measure of the reliability is shown in the values of the bias, b(p), in the

Table 1. The closer to one the better. The positive economic valueV obtained

from the ensemble mean, for C/L=0.1 and C/L=0.2, have a lower value than

the peaks of the C/L curves. For a user with C/L=0.3 and C/L = 0.4 the

deterministic and ensemble mean score almost the same at the probability at

which V reaches its maximum. This means that for these user the operation

can be postpone when the mean of the ensemble or the deterministic run

forecasts the event X1 since the probabilistic forecast does not seem to be

any better.

Assuming that the losses are of the order of two million dollars, the ex-

penses in thousands of dollars obtained according to Eq. 5, are shown in
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Figure 2: Economic value V for the event X1. a) V versus the ratio C/L
obtained by using the ensemble, ENS, the ensemble mean, Emean, and the
deterministic forecast, DET. b) V versus probability of taking action at �xed
values of C/L. The probability at which V reaches its maximum are also
indicated. The ensemble mean and deterministc forecast are also shown in
b).
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Table 1. For the probabilistic forecast the expenses and three veri�cation

measures are calculated at the probabilities at which the operation should

be postponed. The user wants to chose the strategy that will use the least

amount of money. The minimum expenses are those obtained for the the

perfect forecast, Ep. The expenses closest to the perfect are the expenses

obtained from the ensemble forecast Ef (p) in the �rst two cases. In the cases

where p = 0.32 and p = 0.39, the expenses calculated from the ensemble mean

Em
f are closest to Ep. The next are Ef (p) and �nally the expenses calculated

with the deterministic forecast Ed
f with a small di�erence between them. The

saving of using Ef (p) is given by Ec-Ef (p). The user with C/L = 0.2 will

bene�t the most.

In order to evaluate the probabilistic system the last three columns of

table 1 show the bias, b(p), the false alarm rate, fa(p), and the hit rate,

h(p). The probabilistic system presents a light overforcasting since the bias

is bigger than one. The closer the hit rate is from one, indicates that the

event X1 happened and was predicted most of the occasions. The closer to

zero the false alarm rate is, the better the system was at predicting the benign

weather event X0. The best false alarm was for the user with C/L = 0.4,

i.e. p = 0.39, while the best hit rate was for the user with C/L = 0.1, i.e.

p = 0.12. Which is more valuable is for the user to decide. The user with

C/L = 0.2, present the smallest distance between hit rate and false alarm.

In a reliable system, the maximum distance between hit rates and false

alarm rates is reached at Vmax(C/L = a+c
n
) = max(H − F ) as Richardson

explained in the book Jolli�e and Stephenson [2003]. The maximum value

of V is reached when the cost/loss ratio equals the base rate: a+c
n
. This is at

C/L = 0.23, see Figures 2 which also is the percentage of times the event X1

happens. The values of cost-loss ratio chosen in this example are very close

to Vmax where the system performs better.
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X1

prob. Ef (p) Ed
f Ep Em

f Ec-Ef (p) b(p) fa(p) h(p)

p ≈C
L

a+b
a+c

b
b+d

a
a+c

0.12 112.5 144.8 51.3 144.2 127.5 1.861 0.245 0.96
0.23 187 194 98 193 241 1.54 0.147 0.894
0.32 233.5 234.5 136.9 232.4 194 1.184 0.095 0.833
0.39 269.7 270.4 171 268 158 1.018 0.066 0.776

Table 1: For a loss L= 2000000 dollars displayed are the expenses in 103 dol-
lars and three veri�cation measures at the probability at which the operation
should be postponed.

5 Conclusions

With the event studied here, it was easy to demonstrate that the probability

at which to postpone the operation was close to the cost/loss ratio. Once the

probability was chosen, the expenses were calculated and the best expenses

were identi�ed. Evaluating how good the forecast system is, and with it how

good this selected probabilities can be usefull, is not obvious. Instead of

starting by �xing the cost/loss ratio we could analyze the range of cost/loss

for which the distance between Hits rate and False Alarm are large enough.

Although this range might not be of interest for the industry, we could o�er

it as the range for which we have a credible answer. This same analysis

could be done for other events even if they present a bias. The probability

at which to postpone the operation would not be close to the cost/loss ratio.

Analyzing how useful these probabilities are is a challenge.

We could use the strategy suggested by Thornes and Stephenson [2001]

where they classify the error by types. A forecast error that involves safety

has more weight than an error that involves waste of money. Still there is

a long way to go with respect of communicating with the users of EPS, for

instance, Casati et al. [2008], Demeritt et al. [2010]. Although their decision

making process is more complicated we could provide some recommendations

for speci�c cases.

12



Acknowledgments

This is part of the the Wave Ensemble Prediction for O�shore Operations

project (WEPO) which has been funded by the Research Council of Norway

in collaboration with Conocco-Phillips.

References

J.-R. Bidlot, D.J. Holmes, P.A. Wittmann, R.L. Lalbeharry, and H.S. Chen.

Intercomparison of the performance of operational ocean wave forecasting

systems with buoy data. Wea. Forecasting, 17:287�310, 2002.

R. Buizza. Potential forecast skill of ensemble prediction and spread and

skill distribution of the ecmwf ensemble prediction system. Mon. Wea.

Rev, 125:99�119, 1997.

B. Casati, L. J. Wilson, D. B. Stephenson, A. Ghelliand M. Pocernich,

U. Damrath, E. E. Ebert, B. G. Browne, and S. Masonh. Forecast ver-

i�cation: current status and future directions. Meteorol. Appl., 15:3�18,

2008.

D. Demeritt, S. Nobert, H. Cloke, and F. Pappenberger. Challenges in com-

municating and using ensembles in operational �ood forecasting. Meteo-

rological Applications, 17:209�222, 2010.

G. G. Komen, J.L. Cavaleri, M. Donelan, K. Hasselman, and S. Hasselman.

Dynamics and Modelling of Ocean Waves. Cambridge University Press,

1994.

P. Janssen, B. Hansen, and J.-R. Bidlot. Veri�cation of the ecmwf forecasting

system against buoy and altimeter data. Wea. Forecasting, 12:763�784,

1997.

13



Ian T. Jolli�e and D.B. Stephenson. Forecast Veri�cation. A Practitioner's

Guide in Atmospheric Science. John Wiley and Sons, 2003.

M. Leutbecher and T.M. Palmer. Ensemble forecasting. J. Comp. Phys.,

227:3515�3539, 2008.

D. Richardson. Skill and economic value of the ecmwf ensemble prediction

system. Q. J. R. Meteorol. Soc., 126:649�668, 2000.

MS. Roulston and Smith Ellepola J. Forecasting wave height probabilities

with numerical weather prediction models. Ocean Engineering, 32(14 �15):

1841�1863, 2005.

Ø. Saetra and J.-R. Bidlot. Potential bene�t of sig probabilistic forecasts for

waves and marine winds based on the ecmwf ensemble prediction system.

Wea. Forecasting, 19:673�689, 2004.

J.E. Thornes and D.B. Stephenson. How to judge the quality and value of

weather forecast products. Meteorol. Appl, 8:307 � 314, 2001.

DS. Wilks. Statistical Methods in Atmospheric. Academic Press, Burlington,

MA; 627, 2nd edition, 2006.

14


