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Abstract

The design of offshore structures requires estimates of extreme wave height and extreme response.
It is often the case that a number of structures are spread across a region. Furthermore, a number of
different datasets may be available from which extremes can be estimated. It is important that there
is consistency in their design values and that covariate effects, such as directionality, are considered. In
order to achieve this, a hierarchical Bayesian model is proposed that incorporates the spatial variation
in the parameters of the directional extreme value distribution. This ensures the smooth variation in
the parameters across the region whilst allowing for local differences. One of the principle advantages of
this approach is that shorter period measurements can be combined with longer period hindcasts in a
transparent manner. Furthermore, uncertainties in the extreme values can be estimated and incorporated
in load factor calibration studies. The method has been applied to the reanalysis of a North Sea platform
and the results are presented.

1 Introduction

Offshore structures must be designed for extreme environmental loads, which often comprises a combination
of waves, winds and currents. Therefore, the joint distributions of these environmental parameters must
be considered. There are a number of methods by which this can be achieved, but, as it is the extremes
of the joint distributions that are of interest it can be challenging (Jonathan et al., 2009). One method
is to consider the dependence between the waves, winds and currents implicitly by using the structural
response as the parameter of interest (Tromans and Vanderschuren, 1995). However, in order to achieve this
a concurrent data set of all the variables is required. In many regions of the world long period hindcast data
sets of waves and winds exist, but for currents shorter measured data sets are often used. More generally,
the question of how to combine different data sets, and types of data, in a logical manner often arises.
Furthermore, in many cases platforms are distributed across a region and it is desirable that extreme values
at different locations are consistent.

This paper proposed a method for achieving spatially consistent directional design values using different
data sets, and applies it to the reanalysis of a structure in the central North Sea. The method is based
upon a Bayesian hierarchical methodology. The prior distributions of the parameters of the directional
extreme values distribution are described in terms of the latitude and longitude and then data at a point
used to determine the posterior distribution. The paper begins by discussing previous work on Bayesian
and spatiodirectional methods. It continues in section 3 by describing the method, and then in section 4
the results are presented. Finally, the conclusions are discussed in section 5 and further work suggested.
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2 Background

Bayesian methodology, spatiodirectional models and extreme value analysis techniques have been widely
used in environmental studies and engineering design. However the use of all three in combination is less
common. For example, a review of the application of Bayesian methods in extreme value analysis is provided
in Coles and Powell (1996). In particular, they consider the problem of estimating extreme wind speeds by
defining the prior distribution from a analysis of a number of sites across a region. Wikle et al. (2001) use
a hierarchical spatiotemporal model to derive high resolution estimates of the distribution of a wind field
over a large area. They achieve this by combining wind data from satellites (scatterometer) with the results
of weather center wind fields (NCEP). Wikle (2003) review the application of hierarchical models in envi-
ronmental science. In particular, they focuss on spatiotemporal models and break the modeling down into
three components: the data conditional on both the process and the parameters, the process conditional on
the parameters, and the parameters themselves. More recently, Vanem et al. (2011) have used a hierarchical
Bayesian approach in order to determine spatial and temporal variations in the mean significant wave height
across a region of the North Atlantic.

In terms of extreme value analysis, Coles and Tawn (1996) use a Bayesian framework to calculate extreme
rainfall and use this to provide design criteria that include the uncertainty. Coles and Tawn (2005) estimate
extreme storm surges incorporating the seasonal variation in the parameters into the model. They also
discuss a method by which the spatial variation in the parameters can be considered in order to provide
spatially smooth estimates along a coastline. Finally, Jonathan and Ewans (2011) provide spatial estimates
of the one hundred year return period significant wave height in the Gulf of Mexico by using a spatiodirec-
tional model with the smoothness in the parameters of the extreme value distribution ensured by using a
natural thin plate spline algorithm.

3 Method

Point estimates of extreme wave height and structural response (base shear) have been calculated using
the method of Tromans and Vanderschuren (1995). The procedure is outlined below for the latter, as the
similar, but simpler procedure is followed for wave heights.

1. Events associated with peak structural response (storms) are identified within a time series of metocean
parameters (wave heights, wave periods, current speeds, wind speeds and their associated directions).
Where the response is calculated using a global load model

X = A1u
2 +A2uaTΦcos θ (1)

+ A3Φ
2a2 +A4uΦa

2 cos θ/T

+ A5Φ
2a3/T 2 +A6Φ

2a2T 2

+ A7W
2 ,

where a is the wave amplitude, u the depth averaged current speed, W the wind speed, T the associated
wave period, Φ the wave kinematics factor, θ the angle between the wave and the current, and A1−7

coefficients to be determined for different structures.

2. The distribution of the response associated with each event, P (X|s), is calculated

P (X|s) =
∏
i

P (X|i) , (2)

2 of 12



where P (X|i) is the distribution within an interval and the product is over all intervals i in the
event. The most probable maximum response, Xmp, associated with each event is calculated as
P (Xmp|s) = 1/e.

3. The distribution of most probable maximum response is estimated by fitting a Generalised Pareto
distribution to peaks over a threshold.

P (Xmp) = 1− (1 + ϵ(Xmp − γ)/σ)(−1/ϵ) , (3)

where σ is the scale parameter, ϵ the shape, and γ the location. This is applied on the basis that
provided the parent distribution is within the domain of attraction of an extreme value distribution, the
Generalised Pareto distribution asymptotically models the tail (Pickands, 1975). Although, arguably
the most probable maximum response is not a peak as such, but a derived parameter. The distribution
P (Xmp) reflects the long term distribution of the environmental forcing.

4. The distribution of the response,

P (X) =

∫
P (X|Xmp)p(Xmp)dXmp , (4)

incorporating both the long-term, p(Xmp), and the short-term variability, P (X|Xmp), is calculated and
the return period value of interest determined. Where the asymptotic result (distribution of maxima
in a narrow banded process)

P (X|Xmp) ≈ exp[− exp(− lnN((X/Xmp)
β − 1))] , (5)

can be used if the short-term variation is described by a Weibull distribution (shape parameter β),
where N is the number of extremes in an event and lnN ≈ 8.

The directional distribution of the response is included by allowing the shape and scale parameters of the
extreme value distribution to vary as a function of the direction at the peak of the storm,

σ(θ) = a0 +

N∑
i=1

(ai cos(iθ) + bi sin(iθ)) (6)

ϵ(θ) = c0 +
N∑
i=1

(ci cos(iθ) + di sin(iθ)) ,

as suggested by Robinson and Tawn (1997), and where the number of Fourier components N is typically
small. This has previously been applied to wave heights by Jonathan and Ewans (2007) and the importance
of including covariate effects, such as direction, demonstrated in Jonathan et al. (2008).

The spatial variation in extreme wave height and jacket response across the central North Sea has been
defined using a hierarchical Bayesian approach. This uses prior belief about the extreme value distributions
at a particular location. The general assumption that is inherent is that the parameters vary somewhat
smoothly across the region. There are two principle advantages to this approach: there is less variation in
estimates across the region (particularly when covariate effects such as directionality are considered); shorter
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data sets (such as from measurements) can be incorporated naturally.

The Bayesian approach follows from Bayes’ Theorem

p(θ|x) = p(θ)p(x|θ)∫
θ p(θ)p(x|θ)dθ

, (7)

where p(θ) is the prior distribution (reflecting prior knowledge about the parameters), p(x|θ) is defined by
the data at a point (in this case the likelihood) and p(θ|x) is the resulting posterior distribution. Hence,
the posterior distribution is a function of both the data at a point and the prior distribution. The more
data (the longer the data set), the less that the prior distribution influences the result. Although in the
application to extreme value analysis Coles and Powell (1996) argue that as a longer data set becomes
available the threshold will often increase and the number of independent peak events may not increase at
all. Furthermore, it is obviously possible to construct prior distributions that are inherently more or less
informative; the preference here is for the latter.

The entire distribution can be used to include parameter uncertainty in the estimates, through

p(X|x) =
∫
θ
p(X|θ)p(θ|x)dθ , (8)

however, this study is concerned with estimating design values, and hence, only the most probable value (the
mode of the posterior distribution) is of interest. This has the computational advantage of not requiring the
denominator in equation 7 to be evaluated. However, the methodology could also be applied to load factor
studies where equation 8 must be used.

4 Results

In order to determine the prior distribution, data at 16 Nextra (Oceanweather) grid points roughly covering
an area of the central North Sea spanning 56◦ − 62◦N and 0◦ − 4◦E, has been analysed. The spatial vari-
ation in the estimates of the parameters of a Generalised Pareto distribution have been determined using
the following function of latitude (X) and longitude (Y )

υ(X,Y ) = υa + υbX + υcY + υdXY + υeX
2 + υfY

2 + ευ (9)

ϵ(X,Y ) = ϵa + ϵbX + ϵcY + ϵdXY + ϵeX
2 + ϵfY

2 + εϵ ,

where the transformation υ = σ(1 + ϵ) has been applied so that estimates σ and ϵ are uncorrelated, and ε
is a truncated Normal distribution with zero mean and a variance to be determined.

An example of the applicability of the parametric form described in equation 9 is shown in figures 1 and 2,
the first of which is the variation in ϵ for the distribution of Hmp over the region, and the second the results
of the fit. The result for the scale parameter is similar. The residual is shown in figure 3, and indicates that
a Normal distribution is plausible.
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Figure 1: The variation in the mean of the Generalised Pareto shape parameter, ϵ, for Hmp over the region.
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Figure 2: The fit to the mean of the Generalised Pareto shape parameter, ϵ, for Hmp over the region.
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Figure 3: The residual of the fit to the Generalised Pareto shape parameter, ϵ, for Hmp over the region. The
solid black line is the fit using a Normal distribution.

Point estimates (normalised) of the one hundred year return period most probable maximum wave height
across the central North Sea are shown in figure 4 using all of the Nextra grid points within the region.
Estimates of the one hundred year return period most probable maximum wave height (again normalised)
calculated from the mode of the posterior distribution are shown in figure 5. The variation in Bayesian esti-
mate of the wave height is smoother than that presented in figure 4, however, much of the spatial variation
has been retained. This is to be expected as the data set used for wave height is 21 years of the continuous
Nextra hindcast (rather than shorter measured data sets), and hence, the data tends to dominate the prior
distribution.
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Figure 4: One hundred year return period estimate of the most probable maximum wave heightHmp (normalised)
across the central North Sea from point estimates.

6 of 12



Lon

La
t

 

 

0 1 2 3 4 5

55

56

57

58

59

60

61

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Figure 5: One hundred year return period estimate of the most probable maximum wave heightHmp (normalised)
across the central North Sea from the mode of the posterior distribution.

The method has been applied to the reanalysis of a platform in the central North Sea. The omnidirectional
fit to the distribution of most probable maximum wave height is shown in figure 6. In this case the posterior
distribution lies between the prior and the point estimate, but the differences are small.
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Figure 6: The distribution of most probable maximum wave height, Hmp, using 21 years of data from one
location in the central North Sea.

Whilst there is some advantage in using a Bayesian approach for omnidirectional design values in cases where
long data sets are available, the method is more useful for determining conditional distributions using shorter
data sets. An example, is the directional distribution of base shear on a jacket platform. The distributions
have been derived using the combined Nextra wave hindcast and DHI current model, which spans 9 years.
For this example, the directional distribution of the parameters is described by a single Fourier component
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σ(θ) = a0 + a1 cos θ + b1 sin θ (10)

ϵ(θ) = c0 + c1 cos θ + d1 sin θ ,

indicating that the spatial variation in six parameters must be estimated. In practice the likelihood ratio
test can be used to determine the number of Fourier components required (Jonathan and Ewans, 2007).
The spatial model that has been applied is the same as that used for omnidirectional estimates described
in equation 9. This results in forty two parameters that must be determined (seven for each of a0, a1 etc:
six for the spatial variation in the mean and one for the variance).

The results at the platform of interest are shown in figure 7 where the point estimate appears to be dom-
inated by two large events, one from the North and one from the West, resulting in a very directional
distribution. In contrast, the prior distribution, which has been derived using data from across the region,
is much less directional. The resulting posterior distribution is somewhere between the two.

The maximum response for each direction is shown in table 1 and has been calculated by applying equa-
tions 4 and 5. The application is the reanalysis of an existing platform, and hence, the optimal directional
distribution of loading that ensures the omnidirectional reliability has been determined by considering the
directional distribution of the structure’s utilisation (Forristall, 2004; Jonathan et al., 2008). Equation 1
has been inverted to provided a set of environmental conditions that correspond to the one hundred year
response. One set of such conditions is presented in table 2. In practice, a number of such sets of conditions
would be applied.
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Figure 7: The one hundred year return period most probable maximum response Xmp (m) with direction.
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Return Period (yrs)
Direction 1 10 100 10000

Omni 4171 6659 9248 14885

N 4586 7299 9965 15479
NE 4447 6770 8909 13197
E 4191 6168 7946 11512
SE 3957 5764 7404 10707
S 3856 5713 7457 10995

SW 3955 6105 8258 12781
W 4223 6816 9559 15638
NW 4497 7356 10360 16959

Table 1: Directional return period estimates of one hundred year return period maximum base shear (the units
are arbitrary as equation 1 is inverted to determine design conditions).

Direction H (m) T (s) C̄ (m/s)

Omni 26.7 14.9 0.54

N 29.2 14.4 0.32
NE 27.6 14.0 0.33
E 26.2 13.7 0.31
SE 25.4 13.5 0.30
S 25.4 13.5 0.31

SW 26.6 13.8 0.33
W 28.7 14.3 0.32
NW 29.9 14.6 0.30

Table 2: One hundred year return period metocean criteria for wave dominated events with shorter periods, and
associated currents: wave height H, wave period T and depth averaged current speed C.

The utility of the approach can more generally be demonstrated by determining the bias and coefficient
of variation (COV) in estimates from artificially truncated data sets. Point and Bayesian estimates of the
shape, scale and one hundred year return period values have been determined by bootstrapping data from
one location in the North Sea. Ten thousand random samples (with replacement) have been analysed for
different lengths of a data set and the bias and coefficient of variation of the estimated parameters calculated.
These can be expressed as follows

Bias =
µ(X̂)−X

X
, (11)

where µ(X̂) is the mean of the estimates of a parameter of interest and X the mode of the posterior
distribution estimated using the full data set, and

COV =
σ(X̂)

µ(X̂)
, (12)

where here σ(X̂) is the standard deviation of the estimate of the parameter of interest.

Table 3 indicates that, not surprisingly, shorter data sets have a greater bias and that as more data is avail-
able the point and Bayesian estimates converge. More significantly, table 4 demonstrates that the Bayesian
estimate has a very low COV even when using very short data sets (the estimator is more efficient) and that
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the COV increases slightly as more data is available. Of course, this is to be expected, as when only a short
data set is available the prior dominates. This provides a logical method for combining shorter measured
data sets with longer period spatial hindcast data and achieving stable estimates of extreme values. This
approach is demonstrated in figure 8 (which should be compared to figure 6), where a very short truncated
data set is analysed. Of course, none of this considers the uncertainty in the spatial model itself, which
could be included by using an extra hierarchy of parameters that describe the distributions of υa,b,c,d,e,f and
ϵa,b,c,d,e,f , but that is beyond the scope of this study.

Point Estimate Bayesian Estimate

Duration (yrs) σ ϵ Hmp σ ϵ Hmp

2.5 0.148 2.318 -0.226 -0.015 -0.016 -0.005
5 -0.140 0.503 -0.007 -0.029 -0.012 0.036
7.5 -0.150 -0.269 0.063 -0.017 -0.017 0.039
10 -0.131 -0.068 0.008 -0.030 0.009 0.025
12.5 0.024 0.259 -0.028 -0.012 0.014 0.010
15 0.000 0.223 -0.034 -0.019 0.025 0.001
17.5 0.057 0.335 -0.046 -0.010 0.033 -0.007
20 0.053 0.194 -0.023 0.000 0.000 0.000

Table 3: The bias associated with point and bayesian estimates of the scale σ, shape ϵ and one hundred year
estimate of the most probable maximum wave height Hmp for different lengths of data set.

Point Estimate Bayesian Estimate

Duration (yrs) σ ϵ Hmp σ ϵ Hmp

2.5 0.582 0.722 0.129 0.009 0.008 0.005
5 0.488 1.376 0.187 0.020 0.029 0.015
7.5 0.309 1.036 0.113 0.023 0.028 0.015
10 0.201 0.579 0.080 0.025 0.032 0.017
12.5 0.163 0.359 0.053 0.026 0.038 0.019
15 0.147 0.341 0.050 0.026 0.041 0.019
17.5 0.129 0.282 0.045 0.026 0.044 0.020
20 0.141 0.299 0.042 0.027 0.041 0.019

Table 4: The coefficient of variation (COV) associated with point and bayesian estimates of the scale σ, shape
ϵ and one hundred year estimate of the most probable maximum wave height Hmp for different lengths of data
set.
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Figure 8: The distribution of most probable maximum wave height, Hmp, using five years of data from one
location in the central North Sea.

5 Conclusions and Further Work

A Bayesian spatiodirectional model for wave heights and structural response has been proposed where the
prior distributions of the parameters of the extreme value distribution are a function of location. The
method has been applied to the central North Sea and estimates of the one hundred year return period
wave height shown to be smoother than point estimates, but to still retain local features. The method has
also been applied in order to determine directional values of extreme structural response for a North Sea
platform and a highly directional distribution of loading moderated by data from other locations.

The methodology could be extended by considering the distribution of the coefficients that describe the
spatial distribution of the parameters of the extreme value distribution (by increasing the number of levels
to the model). It could also be applied in load factor studies in order to define safety factors that consider
the spatial variation in uncertainty and variability across a region. Furthermore, whilst in this study it
has been proposed that hindcast data could be used to determine the prior distribution. Alternatively, this
suggestions could also be used in reverse in order to provide a spatially varying correction to a hindcast: the
prior distribution would be defined using measurements and then hindcast data used at a point of interest
in order to determine the posterior distribution.
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