Near coastal wave modelling in the German Bight and Wadden Sea

Kathrin Wahle, Heinz Günther, Arno Behrens

October 30th – November 4th 2011

Motivation

Assimilation

Interpolation

Interpolation

Remote Sensin

Spatial

dame.lath

Coastal Observing System for Northern and Arctic Seas coordinated by HZG

- pre-operational system joining observations and numerical models
- observations:
 - in-situ measurements from fixed (piles and buoys) and mobile (FerryBox) platforms
 - remotely sensed data from shore by HF-radar and from space by satellite
- forecasting suite include nested
 - wave model (WAM)
 - 3-D hydrodynamic model (GETM) running in data-assimilation mode

 motivation is the continuous provision of near real-time products for pre-operational service
main characteristic of the system is the integrated approach combining observations and numerical modeling

COSYNA - Numerical Models

WAM Developments (Cycle 4.5.3)

- source function integration scheme of Hersbach and Janssen (1999)
- reformulated dissipation source function of Bidlot, et al (2005, 2007) and Janssen (2008)
- depth induced wave breaking of Battjes & Janssen (1978)
- ✤ in-stationary sea ice
- in-stationary water depth
- in-stationary currents

North Sea spatial resolution: 3nm

forcing wind fields and boundary values from German Weather Service (hourly) German Bight spatial resolution: 1km

forcing water level and surface current fields from GETM (hourly)

- in the open North Sea nearly no difference is found
- significant differences (30% hs, 10-15% tm1) near the coast and in the Wadden Sea (mainly due to water depth changes)
- small areas where STD of tm1 up to 30% (Doppler Shift)

Helmholtz-Zentrum Geesthacht

Validation with buoys

	'Elbe'				'Hoernum Tief'			
	hs [m]		tm1 [s]		hs [m]		tm1 [s]	
mean meas.	1.10		4.36		0.33		2.43	
	WAM	WAM c/wl	WAM	WAM c/wl	WAM	WAM c/wl	WAM	WAM c/wl
bias	0.004	-0.025	0.245	0.174	-0.073	-0.120	0.326	0.150
std	0.164	0.171	0.439	0.397	0.117	0.136	0.350	0.293
slope	1.051	1.085	0.982	1.026	0.779	0.835	0.322	0.574
intercept	-0.061	-0.068	- 0.169	-0.285	0.146	0.174	1.323	0.886

Buoy `Elbe' - Time Series

Helmholtz-Zentrum Geesthacht

Buoy `Elbe´ - Wave Spectra

Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research

9.11

1.87

0.38

0.07

WAM4.5.3 c/wl, spectral density [m²/Hz]

Buoy `Hoernum Tief' - Time Series

Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research

HoernumTief depth [m] 55.5 3∟ 20 Hò wind speed [m/s] wind dir. to [deg] ሊዲ Latitude 54.5 Elbe 0∟ 20 53.5 current dir. to [deg] current speed [m/s] 8.5 6.5 7.5 0.6 Longitude 0∟ 20

days in July 2011

Buoy `Hoernum Tief' - Wave Spectra

WAM4.5.3 c/wl, spectral density [m²/Hz]

Summary

we have analysed the impact of changing water levels and currents on WAM

- in the open North Sea nearly no impact
- significant impact (std 30% hs, std 10-15% tm1) in the shallow water areas near the coast and in the Wadden Sea
- impact on wave period reaches more off-shore than on wave height
- in tidal inlets (strong currents opposing the waves) std of wave period close to 30%
- we have validated the model results with buoy data at two sites
 - wave period measurements were reproduced much better with hydrodynamic forcing
 - agreement in wave heights is excellent at the site in open waters for both model runs
 - at the semi-enclosed bight the model did not reproduce the amplitude of wave height variations with the tide
 - modelled wave directions agree well with the measured ones
- * we conclude that the WAM model can be applied with variable currents and water levels
- in a next step the model will be incorporated in the pre-operational model system in a two-way coupled set-up

Thank you

for your attention!