

Analysis of Shallow Water Wave Measurements Recorded at the Field Research Facility

Marios Christou, Dirk Rijnsdorp & Kevin Ewans Royal Dutch Shell TU Delft

Friday $4^{\rm th}$ November 2011

Christou, Rijnsdorp & Ewans — Waves 2011, Big Island, Hawai'i Analysis of Shallow Water Wave Measurements Recorded at the FRF

イロト イポト イヨト イヨト

イロト イポト イヨト イヨト

э

Motivation of Study

Part of the NOPP project funded by ONR

Christou, Rijnsdorp & Ewans — Waves 2011, Big Island, Hawai'i Analysis of Shallow Water Wave Measurements Recorded at the FRF

Motivation of Study

- Part of the NOPP project funded by ONR
- Wave height with given return period is required for designing coastal structures
 - Wave height probability distribution

< 回 > < 回 > < 回 >

Motivation of Study

- Part of the NOPP project funded by ONR
- Wave height with given return period is required for designing coastal structures
 - Wave height probability distribution
- Hindcast data is typically available in deep water but not shallow depths.
 - Evolution of frequency spectrum

イボト イラト イラト

Motivation of Study

- Part of the NOPP project funded by ONR
- Wave height with given return period is required for designing coastal structures
 - Wave height probability distribution
- Hindcast data is typically available in deep water but not shallow depths.
 - Evolution of frequency spectrum
- Low-frequency waves cause erosion, excite harbour seiches, break ice shelves & cause resonance of moored vessels
 - Infragravity wave prediction

イロト イポト イヨト イヨト

Methodology

- ▶ Field measurements with 34 mins sample duration
- Wave height probability disribution
 - Zero-crossings and ranking wave heights
- Evolution of frequency spectrum
 - Welch method for ensemble averaging of spectrum
- Infragravity wave prediction
 - Run Ideal Surf Beat (IDSB) model

- 4 同 6 4 日 6 4 日 6

Summary of Conclusions

Wave height distribution

- Performed a Kolmogorov-Smirnov test on 1442 individual sea states
- Glukovskiy distribution (as formulated by van Vledder, 1991) provided best fit to data
- Evolution of frequency spectrum
 - TMA spectrum was not comparable with the field measurements, especially for low frequencies
 - ▶ Greater attenuation with larger spectral density for all ranges of kd
- Infragravity wave prediction
 - Ideal Surf Beat (IDSB) model has an average skill of 78%

Field Measurements: Location

Duck, North Carolina, USA

Christou, Rijnsdorp & Ewans - Waves 2011, Big Island, Hawai'i

Analysis of Shallow Water Wave Measurements Recorded at the FRF

Field Measurements: Cases Examined

Instruments

- Nortek Aquadopp (ADOP)
- Nortek Acoustic Wave And Current (AWAC) meters
- Sample at 2 Hz for 34 mins every hour
- Data available for 1442 sea states in 5 storm events

Case	Date	Max. H_s [m]	Mean T_p [s]	
E1	01–05 September 2010	3.2	12.3	
E2	21–23 August 2009	3.3	15.1	
E3	11–16 November 2009	3.0	12.0	
E6	26–28 March 2009	2.9	13.6	
E8	29–30 August 2010	1.7	12.7	

• Case E2 corresponds to Hurricane Bill

< 同 > < 三 > < 三 >

Field Measurements: Bathymetry

Christou, Rijnsdorp & Ewans — Waves 2011, Big Island, Hawai'i

Analysis of Shallow Water Wave Measurements Recorded at the FRF

э

Wave Height Distribution

Theoretical distributions

- 1. Rayleigh: $f(H_s)$
- 2. Forristall (1978): $f(H_s)$
- 3. Glukhovskiy (formulation of van Vledder, 1991): $f(H_s, d)$
- 4. Battjes and Groenendijk (2000): $f(H_s, d, \alpha)$
- Distributions 1 and 2 are for deep water
- Distributions 3 and 4 were developed specifically for shallow water
- Battjes-Groenendijk distribution is a composite Weibull in 2 parts
- None of the distributions has an upper limit
- Analysis
 - Visual inspection for individual sea states
 - Kolmogorov-Smirnov test for goodness of fit

- 4 回 ト - 4 回 ト

Example Probability Distributions for Individual Sea States

Christou, Rijnsdorp & Ewans - Waves 2011, Big Island, Hawai'i

Analysis of Shallow Water Wave Measurements Recorded at the FRF

Test Statistic from K-S Test: Histograms

Christou, Rijnsdorp & Ewans - Waves 2011, Big Island, Hawai'i

Analysis of Shallow Water Wave Measurements Recorded at the FRF

Test Statistic from K-S Test: Summary

Summary of test statistic, k*

Distribution	Mean k*	Mode k*	Median k^*	Std k*	Pass [%]
Rayleigh	0.094	0.059	0.082	0.044	87
Forristall	0.104	0.091	0.092	0.051	80
Glukovskiy	0.075	0.063	0.069	0.030	96
Battjes-Gronendijk	0.089	0.059	0.084	0.033	91

Glukhovskiy has the best agreement with the field measurements

(人間) システン イラン

- 4 回 ト - 4 回 ト

Evolution of Frequency Spectrum

- Frequency resolution of 0.01 Hz
- Analyse spectral evolution of the frequency variance density spectra in time and space
- \blacktriangleright Focus on difference between spectra at 11 ${\rm m}$ & 5 ${\rm m}$ AWACs
- Calculate the gain between the two spectra
- Compare gain to TMA transfer function

Evolution of Spectrum & Gain

AWAC 11m Variance Density Spectra

AWAC 5m Variance Density Spectra

Gain [dB]

Christou, Rijnsdorp & Ewans - Waves 2011, Big Island, Hawai'i

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ </p>
Analysis of Shallow Water Wave Measurements Recorded at the FRF

Mean Gain

- \blacktriangleright Calculate difference between frequency spectrum at 11 $\rm m$ and 5 $\rm m$
- Take the mean of this difference
- \blacktriangleright Compare to TMA transfer function between 11 m and 5 m

Attenuation

Christou, Rijnsdorp & Ewans — Waves 2011, Big Island, Hawai'i

Analysis of Shallow Water Wave Measurements Recorded at the FRF

Ideal Surf Beat (IDSB) Model

 \blacktriangleright Infragravity waves have period between 20 $\rm s$ & 200 $\rm s$

- ► IDSB can simulate generation of bound and free infragravity waves
 - Reniers et al. (2002) JGR
- Assumptions
 - Linear shallow-water wave model
 - Constant along shore bathymetry
 - Full reflection of IG waves at shoreline
 - Narrow spectrum in both frequency and direction
- Incoming and outgoing waves
 - Incoming directionally-spread short waves
 - Incoming bound IG waves
 - Outgoing trapped and leaky free IG waves

マロト イラト イラト

Calculated vs Measured: Case E2

Calculated vs Measured: Case E6

Calculated vs Measured: Case E8

< 17 >

-

-

Calculated vs Measured: Table

Determine the skill, s, at each instrument and overall

$$s=1-rac{\sqrt{\langle(H_{rms,m}-H_{rms,c})^2
angle}}{\langle H^2_{rms,m}
angle}$$

Case	AW4	AW3	AW2	AW1	AD2	AD1	Overall
E2	0.78	0.83	0.78	0.73	-	-	0.78
E6	0.78	0.75	0.74	0.81	-	-	0.77
E8	0.83	0.78	0.74	0.75	0.8	0.81	0.79

Average skill of 78%

イロト イポト イヨト イヨト

-

Conclusions

- Analysed new shallow water measurements at FRF
 - Data available for 1442 sea states in 5 storm events
- Wave height distribution
 - Performed a Kolmogorov-Smirnov test on every sea state
 - Glukovskiy distribution (as formulated by van Vledder, 1991) provided best fit to data
- Evolution of frequency spectrum
 - TMA spectrum was not comparable with the field measurements, especially for low frequencies
 - ► Greater attenuation with larger spectral density for all ranges of kd
- Simulating infragravity waves with Ideal Surf Beat (IDSB) model
 - Average skill of 78%

イロト イポト イヨト イヨト

Acknowledgements

- ONR for providing funding for NOPP project
- US Army Corps. of Engineers for data from FRF: J. Hanson & K. Hathaway
- T. U. Delft staff members: L. Holthuijsen, G. Stelling, M. Zijlema, J. Pietrzak, M. de Schipper & A. Reniers

イロト イポト イヨト イヨト