

Spectral Energy Dissipation due to Surface-Wave Breaking

Leonel Romero*, W. Kendall Melville, and Jessica M. Kleiss

* Present affiliation: University of California, Santa Barbara

Motivation

• Quantify and characterize the strength of deep-water wave breaking from field observations

Methodology

• Close the energy balance equation using wave observations of fetch-limted waves to calculate the energy dissipation

• The semi-empirical energy dissipation is combined with the measured statistics of wave breaking (Kleiss and Melville, 2010) to calculate the strength of breaking.

• Guided by available laboratory measurements of the strength of breaking from focusing packets propose and fit a spectral model of the strength of breaking for field conditions.

Summary

- First quantification of the spectral strength of breaking in the field
- The breaking strength *b(k)* is not a constant, it varies by up to one order of magnitude between the spectral peak and high wavenumbers.
- Based on laboratory measurements and the inertial scaling by Drazen et al. (2008) a spectral model of *b(k)* with a saturation threshold behavior was fitted to the data.

Semi-empirical Dissipation S_{ds}

Energy Balance of deep-waver waves:

$$\frac{\partial F(k,\theta)}{\partial t} + \overline{c}_g \cdot \nabla F(k,\theta) = S_{in} + S_{ds} + S_{nl}$$

• Wave energy advection $\overline{c}_g \cdot \nabla F \approx c_{g_1} \frac{\partial F}{\partial x_1}$ (calculated from measured spectra)

• Wind input S_{in} : calculated from measured spectra, friction velocity, and the forcing functions by Snyder (1981), Janssen (1991), and Janssen (1991) with sheltering

• Nonlinear energy fluxes due to four-wave resonant interactions S_{nl} : calculated from the measured spectra and the "exact" algorithm WRT (Webb, 1978; Resio and Tracy, 1982; van Vledder, 2006; WW3)

• Semi-empirical dissipation:
$$S_{ds} = c_{g_1} \frac{\partial F}{\partial x_1} - S_{in} - S_{nl}$$

Gulf of Tehuantepec Experiment

Flight Tracks

http://winds.jpl.nasa.gov/

-Romero and Melville 2010a,b, 2011
Characterization and modeling of the directional spectrum and wave statistics
-Kleiss and Melville 2010,2011
Quantification and characterization of the wave breaking statistics.

Main Airborne Instrumentation

- Wind measurements including turbulent fluxes and standard atmospheric variables: temperature, humidity, and pressure
- GPS / Inertial Navigation Unit
- LIDARs surface waves
- Nadir looking camera wave breaking

Extrapolation of Spectrum to Large Wavenumbers

Directional Source Terms

 S_{in}^{S} Snyder (1981)

 S_{in}^J Janssen (1991)

Statistics of Breaking Waves

Breaking speed c_{br} and wave phase speed c are linearly related by: $c_{br} = \alpha c$, where $\alpha \approx 0.7$ -0.95 is an empirical constant measured in laboratory studies of breaking waves (Rapp and Melville 1990;Stansell and MacFarlane 2002; Banner and Peirson 2007)

18

16

12

10

 $\frac{c_p}{u_*}$ 14

 10^{-3}

 10^{-4}

 10^{-6}

 10^{0}

c⁻⁶

 10^{1}

c.f. Phillips 1985

Spectral Breaking Strength Function *b(k)*

 $S_{ds}(k) = \int S_{ds}(k,\theta) k \, d\theta \quad : \text{ omnidimensional semi-empirical dissipation } \bigoplus_{\substack{\alpha \in \mathcal{S} \\ \alpha \in \mathcal{S} \\ \alpha \in \mathcal{S}}} \int S_{ds}(k,\theta) k \, d\theta \quad : \text{ omnidimensional distribution of breaking}$

 $\Lambda(c) = \int \Lambda(c,\theta) c \, d\theta$: omnidimensional distribution of breaking statistics (Kleiss and Melville, 2011)

Sensitivity of b(k) to the value of α

Average values of *b* obtained by:

Gemmrich, et al. (2008)

---- Thomson et al. (2009)

 $c_{br} = \mathcal{A} c$

Independent Model of *b(k)*

 $b = A_1 (S - S_T)^{5/2}$ Inertial scaling from laboratory experiments $B(k) = \int F(k,\theta) k_{\text{and}}^4 d\theta \quad \text{: one-dimensional spectral saturation, when is a standard strength of the spectral steepness}$ squared (Banner et al. 2000; Banner et al. 2002). mss = $\int B(k) \frac{dk}{k}$ Mean Square Slope 10^{-2} $b(k) = A (B^{1/2} - B_T^{1/2})^{5/2}$: Model of b(k) 10^{-3} $A \approx 3.9 - 5.5$ $B_T \approx 0.8 \times 10^{-3} - 1.6 \times 10^{-3}$ ▲ DML (SIO) Fits to the \sim field data 10^{-4} ▼ DML (THL) Μ BP + BP (wide basin) 10^{-5} $- -0.65(S - 0.066)^3$ -BP : Banner and Peirson 2007 $-0.4(S-0.08)^{5/2}$ -M: Melville 1994 10^{-6} -DML: Drazen, Melville, and Lenain 2008 0.10.20.30 0.40.50.6S

Model of b(k)

Concluding Remarks

- First quantification of the spectral strength of breaking in the field
- *b(k)* is not a constant, it varies by up to an order of magnitude between the spectral peak and high wavenumbers.
- Based on laboratory measurements and the inertial scaling by Drazen et al. (2008) a spectral model of *b(k)* with a saturation threshold behavior was fitted to the data.
- This work is currently in review for publication in JPO.

Dimensionless Growth Rate

Wave Induced Momentum

Extrapolation of Spectrum to Large Wavenumbers

 $(15.32^{\circ}N,95.14^{\circ}W), c_p/u_* = 15$

Limit of scanning lidar data

Future Work

• Need to extend this work to lower values of *c*.

$$\rho g S_{ds}(c) dc = b \frac{\Lambda(c) c^5}{g} dc$$

- Other regimes:
 - -Extreme wind forcing
 - Broader range of wave age
 - Areas with significant wave current interaction.

Surface Topography Data

Motivation

- •*b* is not a constant, spans over three orders of magnitude
- •The data shows a threshold behavior $b=A (S-S_T)^N$, with N=5/2 which is consistent with the inertial scaling by DML.

•The goal is to determine and model b(k) from field observations

Quantifying the Strength of Wave Breaking in the Field b(k)

*The model of b would allow the prediction of the statistics of breaking waves in the field

SST associated with upwelling due to gap winds in the Gulf of Tehuantepec

NSF/NCAR C-130

Bin-Averaging and Error Propagation

 k_{b_p} is the wavenumber at the peak of b(k)

b(k) Models and Field Data

Models of b(k)

 $b_1(k) = A_1(B(k)^{1/2} - B_T(k)^{1/2})^{5/2}$

$$b_2(k) = A_2(\tilde{B}(k)^{1/2} - \tilde{B}_T(k)^{1/2})^{5/2}$$

TABLE 1. Average and standard deviation of the parameters of models $b_1(k)$ and $b_2(k)$ in equations (26) and (27) fitted against the bin-averaged data of b(k). The mean and standard deviation values given correspond to the mean and standard deviation of the parameters fitted for each bin-averaged distribution of b(k)

Parameter	Average	Std. Dev.	Average	Std. Dev.
	lpha=0.9		$\alpha = 1.0$	
Janssen 1991				
A_1	3.9	0.8	4.9	0.8
B_T	10.6×10^{-4}	2.0×10^{-4}	8.8×10^{-4}	1.2×10^{-4}
N_{w_1}	6.1	1.1	7.4	0.9
A_2	1.7	0.4	2.2	0.4
\tilde{B}_T	2.1×10^{-3}	0.4×10^{-3}	1.6×10^{-3}	0.2×10^{-3}
N_{w_2}	3.2	0.5	4.0	0.5
Snyder 1981				
A_1	4.4	0.9	5.5	0.8
B_T	9.7×10^{-4}	1.8×10^{-4}	8.0×10^{-4}	1.0×10^{-4}
N_{w_1}	6.7	1.1	8.1	1.0
A_2	1.9	0.4	2.5	0.4
\tilde{B}_T	1.9×10^{-3}	0.3×10^{-3}	1.5×10^{-3}	0.2×10^{-3}
N_{w_2}	3.5	0.6	4.4	0.6

Phillips' (1985) Equilibrium Range Model

$$S_{in} + S_{ds} + S_{nl} = 0$$

| $S_{in} | \sim | S_{ds} | \sim | S_{nl} |$

- Based on empirical knowledge of the spectrum, wind input by Plant (1982), and scaling of $S_{nl} \rightarrow S_{ds}$
- Prediction of the spectral statistics of breaking front per unit surface area $\Lambda(c)$ using a constant value of the breaking parameter b.

$$\rho g S_{ds}(c) dc = b \frac{\Lambda(c) c^5}{g} dc \longrightarrow \Lambda(c) \propto c^{-6}$$

Bin-Averaging and Error Propagation

 k_{b_p} is the wavenumber at the peak of b(k)

Energy dissipation

$$\rho_w g S_{ds}(c) dc = \rho_w \frac{b(c)}{g} \Lambda(c) c^5 dc$$

• b(c) - strength of wave breaking

Momentum loss due to wave breaking

$$\rho_{w}g\frac{S_{ds}(c)}{c}dc = \rho_{w}\frac{b(c)}{g}\Lambda(c)c^{4}dc$$

• $\Lambda(c_{br})$ quantified from the GOTEX video observations in Kleiss and Melville 2011.

Gulf of Mexico (October 2011)

Gulf of Mexico (October 2011)

Wave Breaking Statistics

 $\Lambda(c_{br})$: length of breaking fronts with velocity in the range $(c_{br}, c_{br} + \Delta c_{br})$ per unit surface area.

$$\Lambda(c_{br}) = \frac{\sum L_{br}(c_{br} - \frac{\Delta c_{br}}{2} < c < c + \frac{\Delta c_{br}}{2})}{A_{tot} \Delta c_{br}}$$

 L_{br} is the length of each breaking crest moving with velocity $(c_{br}, c_{br} + \Delta c_{br})$ A_{tot} the total surface area

• $\Lambda(c_{br})$ and its moments provide a framework to relate the kinematics and dynamics of breaking waves through a dimensionless function $b(c_{br})$ (Phillips 1985)

Directional Source Terms

One-dimensional Saturation and Directional Spreading

Strength of Breaking Model Fitting

Predictions of $\Lambda(c)$ Based on the Model of b at larger values of c

Gulf of Tehuantepec Experiment (GOTEX)

*February, 2004

Goals:Processes of wavedevelopment and breaking

Setting:

- Offshore, gale-force winds
- Predictable wind events with high probability
- Essentially open airspace

Platform:

• C-130 Aircraft based in Huatulco, Mexico

Flight Tracks

Airborne LIDARS

<u>ATM</u> –

- Pulse rate: 5 khz
- Conical scanning rate: 20 hz
- Along track resolution: 5 m (at 100 m/s)
- Cross track resolution: 2.5 m
- Nominal altitude: 400 m
- Swath Width: 200m
- Calibrated error of elevation per pulse of approx 8 cm (Krabill & Martin, 1987)

<u>RIEGL</u>

- Pulse Rate: 5khz
- Nominal altitude: 30 and 200m
- Net rms elevation error ~ 11cm

Omnidirectional Spectra

$$\phi(k) = \int_{-\pi/2}^{\pi/2} F(k,\theta) k d\theta$$

• $F(k, \theta)$: directional wavenumber spectrum

• Peak is enhanced at early stages of development.

25

22

• A k^{-2.5} power-law is consistent with the equilibrium models by Phillips 1985, and Kitaiigorodski, 1983.

Old seas

Implications for Wave – Current Interactions

- The model of *b(k)* provides a rational framework to predict the statistics of breaking fronts in the field
 - Opens a way to include wave breaking effects in models of the upper ocean circulation (e.g. Sullivan et al. 2007, Restrepo 2007, and Restrepo et al. 2010)

Other Applications

- Remote sensing
- Air-sea interaction (momentum flux, whitecapping coverage, aerosol productions, gas exchange)

Directional Source Terms

