SURA / IOOS Testbed for the Evaluation of Wave, Storm Surge and Inundation Models

Rick Luettich

University of North Carolina at Chapel Hill Institute of Marine Sciences Center for the Study of Natural Hazards and Disasters

12th Waves Workshop & 3rd Coastal Hazard Symposium of NORTH CAROLINA At CHAPPEL HILL

Provide evaluation of models in or under consideration for "operational use"

Behavior

- Accuracy
- Robustness
- Execution speed
- Implementation requirements
 - Resolution
 - Parameterization
 - Computer capacity

Develop testbed infrastructure to greatly facilitate future model evaluation

- Standards
- Interoperability
- Model evaluation tools (e.g., IMEDS skill assessment)
- Data/model archives and access

3

Example Questions

Should I use a grid having?

- 10,000 cells
- 100,000 cells
- 1,000,000 cells
- 10,000,000 cells

Under what circumstances? For what expected benefit? At what cost?

Example Questions

Am I better off using my computational resources to?

- Run a 3D model (vs a 2D model)
- Increase horizontal resolution
- Run a coupled wave model
- Run ensembles of low resolution models

Under what circumstances? For what expected benefit? At what cost?

5

Example Questions

From the user's perspective

 Are all models about the same in terms of accuracy, efficiency?

• Is there a preferred model out there?

From the model developer's perspective

• Why aren't you using my model?

A bridge between Research & Operations

Conclusions

Considerable time to develop common infrastructure (get on same page)

- Grids
- Forcing
- Data Formats
- Observational data sets
- Parameter sets & methodology
- Seeing differences between 3 Unstructured Grid surge models (ADCIRC, FVCOM, SELFE)
- Systematic differences btwn UG surge models & SLOSH
- Not far enough along with wave models for conclusions
- It's hard to do a testbed well, requires much consensus!
- Very positive community building activity

Testbed Geographical Locations

Extratropical Storms in the Gulf of Maine

- 2005 & 2007 Nor'Easters
- •Focus on Scituate Harbor, MA
- Little observational data in Scituate Harbor

Tropical Storms in the Gulf of Mexico
Hurricanes Rita (2005) and Ike (2008)
Focus on northwestern Gulf of Mexico
Extensive observational data sets (e.g., >700 water level hydrographs for Ike)

Extratropical - Gulf of Maine Team

ADCIRC + unstructured SWAN •Joannes Westerink – U Notre Dame FVCOM + SWAVE •Bob Beardsley – Woods Hole Oceanographic Institute, co-Lead •Changsheng Chen – U Mass Dartmouth SELFE + WWM •Harry Wang – Virginia Institute of Marine Sciences

SLOSH + SWAN – PV2 hurricane basin, ECETSS •Don Slinn – U Florida

WWIII & SWAN

•Will Perrie, Bash Toulaney – Bedford Institute of Oceanography

OTHERS

•Jeff Hanson – US Army Corps of Engineers FRF

•Jesse Feyen – NOAA CSDL

•Arthur Taylor, Anne Kramer, Amy Haase – NOAA MDL

•MANY OTHER WORKERS!

Extratropical - Domains

Gulf of Maine with high resolution nesting in Scituate, MA

5620 nodes 10 m – 1 km horiz resolution

Scituate Harbor

<2km in size 2 particular areas of concern flood frequently during Nor'Easters

Scituate Harbor

Gulf of Maine SLOSH Grids

East Coast Extratropical Storm Surge Grid

PV 2 Slosh Hurricane Basin

~2 km horiz resolution near Scituate

Gulf of Maine / Scituate Regular Wave Grids

WW III and SWAN Series of nested grids

2005 Nor'Easter

Sites and sections in the model grid

Including Waves

2005 Nor'Easter

Sites and sections in the model grid

Including Waves

2005 Nor'Easter

Sites and sections in the model grid

Including Waves

Wave Model Resolution (2007)

Sig. Wave Heights at 20070416 05

Sig. Wave Heights at 20070416 05

Sig. Wave Heights at 2007041605

25 frequencies 24 directions

30 frequencies 36 directions

35 frequencies 72 directions

Extratropical Findings

Scituate Harbor

- Water levels very close between ADCIRC, FVCOM, SELFE for tidal forcing and storm forcing – some differences in inundation behavior
- Velocity fields similar without waves, significantly different with waves coupling (via radiation stress gradient terms)
- Including wave coupling increases flux past and into mouth of Scituate Harbor, although perhaps not into interior
- Results are sensitive to wave model resolution?

Greater Gulf of Maine

Wave model comparisons are ongoing

Tropical - Gulf of Mexico Team

ADCIRC + unstructured SWAN • Joannes Westerink – U Notre Dame

FVCOM + SWAVE
Bob Weisberg – U South Florida
Chunyan Li – Louisiana State University

SELFE + WWMHarry Wang – Virginia Institute of Marine Sciences

•Don Slinn – U Florida

OTHERS •Jeff Hanson – US Army Corps of Engineers FRF •Jesse Feyen – NOAA CSDL •Jamie Rhome, Christina Forbes - NHC •MANY OTHER WORKERS!

Tropical - Domains

Gulf of Mexico with enhanced resolution along the western Louisiana and Northern Texas coasts where Rita and Ike landed

Tropical - Domains

Gulf of Mexico with enhanced resolution along the western Louisiana and Northern Texas coasts

Tidal Observation Stations

39

10 Constituent Tidal Amplitudes

Hurricane Ike (2008)

1 42

r09 c8+tides Water Surface Elevations + Winds

LANDFALL 0 hrs

70

Intermodel Comparison

Without Waves

USGS-Deployable

TCOON

USGS-Deployable

TCOON

Intermodel Comparison

With Waves

USGS-Deployable

USGS-Deployable

TCOON

Intergrid Comparison

sl18tx (18061765 Elements, 9,108,128 Nodes)

(825284 Elements, 424485 Nodes)

TCOON

Tropical Findings

- FVCOM, SELFE, tides slightly more damped than ADCIRC
- ADCIRC, FVCOM, SELFE capture both parts to hurricane Ike surge – although FVCOM is consistently lower than the other two
- SLOSH misses the geostrophic setup ahead of storm and is consistently below other models
- Enhanced grid resolution does make a difference in local areas, albeit at high cost
- Wave model comparisons ongoing.

